Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
< >
page |< < (32) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="90">
          <pb o="32" file="0175" n="175" rhead="DE CENTRO GRAVIT. SOLID."/>
          <p>
            <s xml:space="preserve">SIT fruſtũ pyramidis, uel coni, uel coni portionis a d,
              <lb/>
            cuius maior baſis a b, minor c d. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſecetur altero plano
              <lb/>
            baſi æquidiſtante, ita utſectio e f ſit proportionalis inter
              <lb/>
            baſes a b, c d. </s>
            <s xml:space="preserve">conſtituatur autẽ pyramis, uel conus, uel co-
              <lb/>
            ni portio a g b, cuius baſis ſit eadem, quæ baſis maior fru-
              <lb/>
            ſti, & </s>
            <s xml:space="preserve">altitudo æqualis. </s>
            <s xml:space="preserve">Di-
              <lb/>
              <anchor type="figure" xlink:label="fig-0175-01a" xlink:href="fig-0175-01"/>
            co fruſtum a d ad pyrami-
              <lb/>
            dem, uel conum, uel coni
              <lb/>
            portionem a g b eandem
              <lb/>
            proportionẽ habere, quã
              <lb/>
            utræque baſes, a b, c d unà
              <lb/>
            cum e f ad baſim a b. </s>
            <s xml:space="preserve">eſt
              <lb/>
            enim fruſtum a d æquale
              <lb/>
            pyramidi, uel cono, uel co-
              <lb/>
            ni portioni, cuius baſis ex
              <lb/>
            tribus baſibus a b, e f, c d
              <lb/>
            conſtat; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">altitudo ipſius
              <lb/>
            altitudini eſt æqualis: </s>
            <s xml:space="preserve">quod mox oſtendemus. </s>
            <s xml:space="preserve">Sed pyrami
              <lb/>
            des, coni, uel coni portiões,
              <lb/>
              <anchor type="figure" xlink:label="fig-0175-02a" xlink:href="fig-0175-02"/>
            quæ ſunt æquali altitudine,
              <lb/>
            eãdem inter ſe, quam baſes,
              <lb/>
            proportionem habent, ſicu-
              <lb/>
            ti demonſtratum eſt, partim
              <lb/>
            ab Euclide in duodecimo li-
              <lb/>
              <anchor type="note" xlink:label="note-0175-01a" xlink:href="note-0175-01"/>
            bro elementorum, partim à
              <lb/>
            nobis in cõmentariis in un-
              <lb/>
            decimam propoſitionẽ Ar-
              <lb/>
            chimedis de conoidibus, & </s>
            <s xml:space="preserve">
              <lb/>
            ſphæroidibus. </s>
            <s xml:space="preserve">quare pyra-
              <lb/>
            mis, uel conus, uel coni por-
              <lb/>
            tio, cuius baſis eſt tribus illis
              <lb/>
            baſibus æqualis ad a g b eam
              <lb/>
            habet proportionem, quam
              <lb/>
            baſes a b, e f, c d ad ab bafim. </s>
            <s xml:space="preserve">Fruſtum igitur a d ad a g b</s>
          </p>
        </div>
      </text>
    </echo>