Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
131
10
132
133
11
134
135
12
136
137
13
138
139
14
140
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
151
20
152
153
21
154
155
22
156
157
23
158
159
24
160
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div272
"
type
="
section
"
level
="
1
"
n
="
92
">
<
p
>
<
s
xml:id
="
echoid-s4831
"
xml:space
="
preserve
">
<
pb
file
="
0192
"
n
="
192
"
rhead
="
FED. COMMANDINI
"/>
grauitatis eſſe punctum m. </
s
>
<
s
xml:id
="
echoid-s4832
"
xml:space
="
preserve
">patetigitur totius dodecahe-
<
lb
/>
dri, centrum grauitatis idẽ eſſe, quod & </
s
>
<
s
xml:id
="
echoid-s4833
"
xml:space
="
preserve
">ſphæræ ipſum com
<
lb
/>
prehendentis centrum. </
s
>
<
s
xml:id
="
echoid-s4834
"
xml:space
="
preserve
">quæ quidem omnia demonſtraſſe
<
lb
/>
oportebat.</
s
>
<
s
xml:id
="
echoid-s4835
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div278
"
type
="
section
"
level
="
1
"
n
="
93
">
<
head
xml:id
="
echoid-head100
"
xml:space
="
preserve
">PROBLEMA VI. PROPOSITIO XX VIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s4836
"
xml:space
="
preserve
">
<
emph
style
="
sc
">Data</
emph
>
qualibet portione conoidis rectangu
<
lb
/>
li, abſciſſa plano ad axem recto, uel non recto; </
s
>
<
s
xml:id
="
echoid-s4837
"
xml:space
="
preserve
">fie-
<
lb
/>
ri poteſt, ut portio ſolida inſcribatur, uel circum-
<
lb
/>
ſcribatur ex cylindris, uel cylindri portionibus,
<
lb
/>
æqualem habentibus altitudinem, ita ut recta li-
<
lb
/>
nea, quæ inter centrum grauitatis portionis, & </
s
>
<
s
xml:id
="
echoid-s4838
"
xml:space
="
preserve
">
<
lb
/>
figuræ inſcriptæ, uel circumſcriptæ interiicitur,
<
lb
/>
ſit minor qualibet recta linea propoſita.</
s
>
<
s
xml:id
="
echoid-s4839
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4840
"
xml:space
="
preserve
">Sit portio conoidis rectanguli a b c, cuius axis b d, gra-
<
lb
/>
uitatisq; </
s
>
<
s
xml:id
="
echoid-s4841
"
xml:space
="
preserve
">centrum e: </
s
>
<
s
xml:id
="
echoid-s4842
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4843
"
xml:space
="
preserve
">fit g recta linea propoſita. </
s
>
<
s
xml:id
="
echoid-s4844
"
xml:space
="
preserve
">quam ue
<
lb
/>
ro proportionem habet linea b e ad lineam g, eandem ha-
<
lb
/>
beat portio conoidis ad ſolidum h: </
s
>
<
s
xml:id
="
echoid-s4845
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4846
"
xml:space
="
preserve
">circumſcribatur por
<
lb
/>
tioni figura, ſicuti dictum eſt, ita ut portiones reliquæ ſint
<
lb
/>
ſolido h minores: </
s
>
<
s
xml:id
="
echoid-s4847
"
xml:space
="
preserve
">cuius quidem figuræ centrum grauitatis
<
lb
/>
ſit punctum
<
emph
style
="
sc
">K</
emph
>
. </
s
>
<
s
xml:id
="
echoid-s4848
"
xml:space
="
preserve
">Dico lineã k e minorem eſſe linea g propo-
<
lb
/>
ſita. </
s
>
<
s
xml:id
="
echoid-s4849
"
xml:space
="
preserve
">niſi enim ſit minor, uel æqualis, uel maior erit. </
s
>
<
s
xml:id
="
echoid-s4850
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4851
"
xml:space
="
preserve
">quo-
<
lb
/>
niam figura circumſcripta ad reliquas portiones maiorem
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0192-01
"
xlink:href
="
note-0192-01a
"
xml:space
="
preserve
">8. quĭnti.</
note
>
proportionem habet, quàm portio conoidis ad ſolidum h;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4852
"
xml:space
="
preserve
">hoc eſt maiorem, quàm b c ad g: </
s
>
<
s
xml:id
="
echoid-s4853
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4854
"
xml:space
="
preserve
">b e ad g non minorem
<
lb
/>
habet proportionem, quàm ad _k_ e, propterea quod k e non
<
lb
/>
ponitur minor ipſa g: </
s
>
<
s
xml:id
="
echoid-s4855
"
xml:space
="
preserve
">habebit figura circumſcripta ad por
<
lb
/>
tiones reliquas maiorem proportionem quàm b e ad e k: </
s
>
<
s
xml:id
="
echoid-s4856
"
xml:space
="
preserve
">
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0192-02
"
xlink:href
="
note-0192-02a
"
xml:space
="
preserve
">29. quĭnti
<
lb
/>
ex tradi-
<
lb
/>
tione Cã-
<
lb
/>
ſàni.</
note
>
& </
s
>
<
s
xml:id
="
echoid-s4857
"
xml:space
="
preserve
">diuidendo portio conoidis ad reliquas portiones habe-
<
lb
/>
bit maiorem, quàm b
<
emph
style
="
sc
">K</
emph
>
ad K e. </
s
>
<
s
xml:id
="
echoid-s4858
"
xml:space
="
preserve
">quare ſi fiat ut portio </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>