Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
< >
page |< < (46) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div284" type="section" level="1" n="95">
          <p>
            <s xml:id="echoid-s5082" xml:space="preserve">
              <pb o="46" file="0203" n="203" rhead="DE CENTRO GRAVIT. SOLID."/>
            ro ita demonſtrabitur. </s>
            <s xml:id="echoid-s5083" xml:space="preserve">Ducatur à puncto b ad planum ba-
              <lb/>
            ſis a c perpendicularis linea b h, quæ ipſam e fin K ſecet.
              <lb/>
            </s>
            <s xml:id="echoid-s5084" xml:space="preserve">erit b h altitudo coni, uel coni portionis a b c: </s>
            <s xml:id="echoid-s5085" xml:space="preserve">& </s>
            <s xml:id="echoid-s5086" xml:space="preserve">b K altitu
              <lb/>
              <note position="right" xlink:label="note-0203-01" xlink:href="note-0203-01a" xml:space="preserve">16. unde-
                <lb/>
              cimi.</note>
            do e f g. </s>
            <s xml:id="echoid-s5087" xml:space="preserve">Quod cum lineæ a c, e f inter ſe æ quidiſtent, ſunt
              <lb/>
            enim planorum æ quidiſtantium ſectiones: </s>
            <s xml:id="echoid-s5088" xml:space="preserve">habebit d b ad
              <lb/>
              <note position="right" xlink:label="note-0203-02" xlink:href="note-0203-02a" xml:space="preserve">4 ſexti.</note>
            b g proportionem ean dem, quam h b ad b k. </s>
            <s xml:id="echoid-s5089" xml:space="preserve">quare por-
              <lb/>
            tio conoidis a b c ad portionem e f g proportionem habet
              <lb/>
            compoſitam ex proportione baſis a c ad baſim e f; </s>
            <s xml:id="echoid-s5090" xml:space="preserve">& </s>
            <s xml:id="echoid-s5091" xml:space="preserve">ex
              <lb/>
            proportione d b axis ad axem b g. </s>
            <s xml:id="echoid-s5092" xml:space="preserve">Sed circulus, uel
              <lb/>
              <note position="right" xlink:label="note-0203-03" xlink:href="note-0203-03a" xml:space="preserve">2. duode
                <lb/>
              cimi</note>
            ellipſis circa diametrum a c ad circulum, uel ellipſim
              <lb/>
              <note position="right" xlink:label="note-0203-04" xlink:href="note-0203-04a" xml:space="preserve">7. de co-
                <lb/>
              noidibus
                <lb/>
              & ſphæ-
                <lb/>
              roidibus</note>
            circa e f, eſt ut quadratum a c ad quadratum e f; </s>
            <s xml:id="echoid-s5093" xml:space="preserve">hoc eſt ut
              <lb/>
            quadratũ a d ad quadratũ e g. </s>
            <s xml:id="echoid-s5094" xml:space="preserve">& </s>
            <s xml:id="echoid-s5095" xml:space="preserve">quadratum a d ad quadra
              <lb/>
            tum e g eſt, ut linea d b ad lineam b g. </s>
            <s xml:id="echoid-s5096" xml:space="preserve">circulus igitur, uel el
              <lb/>
            lipſis circa diametrum a c ad circulũ, uel ellipſim circa e f,
              <lb/>
              <note position="right" xlink:label="note-0203-05" xlink:href="note-0203-05a" xml:space="preserve">15. quinti</note>
            hoc eſt baſis ad baſim eandem proportionem habet, quã
              <lb/>
              <note position="right" xlink:label="note-0203-06" xlink:href="note-0203-06a" xml:space="preserve">20. primi
                <lb/>
              conicorũ</note>
            d b axis ad axem b g. </s>
            <s xml:id="echoid-s5097" xml:space="preserve">ex quibus ſequitur portionem a b c
              <lb/>
            ad portionem e b f habere proportionem duplam eius,
              <lb/>
            quæ eſt baſis a c ad bafim e f: </s>
            <s xml:id="echoid-s5098" xml:space="preserve">uel axis d b ad b g axem. </s>
            <s xml:id="echoid-s5099" xml:space="preserve">quod
              <lb/>
            demonſtrandum proponebatur.</s>
            <s xml:id="echoid-s5100" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div286" type="section" level="1" n="96">
          <head xml:id="echoid-head103" xml:space="preserve">THEOREMA XXV. PROPOSITIO XXXI.</head>
          <p>
            <s xml:id="echoid-s5101" xml:space="preserve">Cuiuslibet fruſti à portione rectanguli conoi
              <lb/>
            dis abſcisſi, centrum grauitatis eſt in axe, ita ut
              <lb/>
            demptis primum à quadrato, quod fit ex diame-
              <lb/>
            tro maioris baſis, tertia ipſius parte, & </s>
            <s xml:id="echoid-s5102" xml:space="preserve">duabus
              <lb/>
            tertiis quadrati, quod fit ex diametro baſis mino-
              <lb/>
            ris: </s>
            <s xml:id="echoid-s5103" xml:space="preserve">deinde à tertia parte quadrati maioris baſis
              <lb/>
            rurſus dempta portione, ad quam reliquum qua
              <lb/>
            drati baſis maioris unà cum dicta portione duplã
              <lb/>
            proportionem habeat eius, quæ eſt quadrati </s>
          </p>
        </div>
      </text>
    </echo>