Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
< >
page |< < (27) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div252" type="section" level="1" n="86">
          <p>
            <s xml:id="echoid-s4095" xml:space="preserve">
              <pb o="27" file="0165" n="165" rhead="DE CENTRO GRAVIT. SOLID."/>
            proportionem habet, quam baſis a b c d ad baſim g h k l:
              <lb/>
            </s>
            <s xml:id="echoid-s4096" xml:space="preserve">ſi enim intelligantur duæ pyramides a b c d e, g h k l m, ha-
              <lb/>
            bebunt hæ inter ſe proportionem eandem, quam ipſarum
              <lb/>
            baſes ex ſexta duodecimi elementorum. </s>
            <s xml:id="echoid-s4097" xml:space="preserve">Sed ut baſis a b c d
              <lb/>
            ad g h K l baſim, ita linea o ad lineam p; </s>
            <s xml:id="echoid-s4098" xml:space="preserve">hoc eſt ad lineam q
              <lb/>
            ei æqualem. </s>
            <s xml:id="echoid-s4099" xml:space="preserve">ergo priſma a e ad priſma g m eſt, ut linea o
              <lb/>
            ad lineam q. </s>
            <s xml:id="echoid-s4100" xml:space="preserve">proportio autem o ad q cõpoſita eſt ex pro-
              <lb/>
            portione o ad p, & </s>
            <s xml:id="echoid-s4101" xml:space="preserve">ex proportione p ad q. </s>
            <s xml:id="echoid-s4102" xml:space="preserve">quare priſma
              <lb/>
            a e ad priſma g m, & </s>
            <s xml:id="echoid-s4103" xml:space="preserve">idcirco pyramis a b c d e, ad pyrami-
              <lb/>
            dem g h K l m proportionem habet ex eiſdem proportio-
              <lb/>
            nibus compoſitam, uidelicet ex proportione baſis a b c d
              <lb/>
            ad baſim g h _K_ l, & </s>
            <s xml:id="echoid-s4104" xml:space="preserve">ex proportione altitudinis e f ad m n al
              <lb/>
            titudinem. </s>
            <s xml:id="echoid-s4105" xml:space="preserve">Quòd ſi lineæ e f, m n inæquales ponantur, ſit
              <lb/>
            e f minor: </s>
            <s xml:id="echoid-s4106" xml:space="preserve">& </s>
            <s xml:id="echoid-s4107" xml:space="preserve">ut e f ad m n, ita fiat linea p ad lineam u: </s>
            <s xml:id="echoid-s4108" xml:space="preserve">de
              <lb/>
              <figure xlink:label="fig-0165-01" xlink:href="fig-0165-01a" number="121">
                <image file="0165-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0165-01"/>
              </figure>
            inde ab ipſa m n abſcindatur r n æqualis e f: </s>
            <s xml:id="echoid-s4109" xml:space="preserve">& </s>
            <s xml:id="echoid-s4110" xml:space="preserve">per r duca-
              <lb/>
            tur planum, quod oppoſitis planis æquidiſtans faciat ſe-
              <lb/>
            ctionem s t. </s>
            <s xml:id="echoid-s4111" xml:space="preserve">erit priſma a e, ad priſma g t, ut baſis a b c d
              <lb/>
            ad baſim g h k l; </s>
            <s xml:id="echoid-s4112" xml:space="preserve">hoc eſt ut o ad p: </s>
            <s xml:id="echoid-s4113" xml:space="preserve">ut autem priſma g t ad
              <lb/>
            priſma g m, ita altitudo r n; </s>
            <s xml:id="echoid-s4114" xml:space="preserve">hoc eſt e f ad altitudinẽ m n;
              <lb/>
            </s>
            <s xml:id="echoid-s4115" xml:space="preserve">
              <note position="right" xlink:label="note-0165-01" xlink:href="note-0165-01a" xml:space="preserve">20. huius</note>
            uidelicet linea p ad lineam u. </s>
            <s xml:id="echoid-s4116" xml:space="preserve">ergo ex æquali priſma a e ad
              <lb/>
            priſma g m eſt, ut linea o ad ipſam u. </s>
            <s xml:id="echoid-s4117" xml:space="preserve">Sed proportio o ad
              <lb/>
            u cõpoſita eſt ex proportione o ad p, quæ eſt baſis a b c d
              <lb/>
            ad baſim g h k l; </s>
            <s xml:id="echoid-s4118" xml:space="preserve">& </s>
            <s xml:id="echoid-s4119" xml:space="preserve">ex proportione p ad u, quæ eſt altitudi-
              <lb/>
            nis e f ad altitudinem m n. </s>
            <s xml:id="echoid-s4120" xml:space="preserve">priſma igitur a e ad priſma g </s>
          </p>
        </div>
      </text>
    </echo>