Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
151
20
152
153
21
154
155
22
156
157
23
158
159
24
160
161
25
162
163
26
164
165
27
166
167
28
168
169
29
170
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(27)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div252
"
type
="
section
"
level
="
1
"
n
="
86
">
<
p
>
<
s
xml:id
="
echoid-s4095
"
xml:space
="
preserve
">
<
pb
o
="
27
"
file
="
0165
"
n
="
165
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
proportionem habet, quam baſis a b c d ad baſim g h k l:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4096
"
xml:space
="
preserve
">ſi enim intelligantur duæ pyramides a b c d e, g h k l m, ha-
<
lb
/>
bebunt hæ inter ſe proportionem eandem, quam ipſarum
<
lb
/>
baſes ex ſexta duodecimi elementorum. </
s
>
<
s
xml:id
="
echoid-s4097
"
xml:space
="
preserve
">Sed ut baſis a b c d
<
lb
/>
ad g h K l baſim, ita linea o ad lineam p; </
s
>
<
s
xml:id
="
echoid-s4098
"
xml:space
="
preserve
">hoc eſt ad lineam q
<
lb
/>
ei æqualem. </
s
>
<
s
xml:id
="
echoid-s4099
"
xml:space
="
preserve
">ergo priſma a e ad priſma g m eſt, ut linea o
<
lb
/>
ad lineam q. </
s
>
<
s
xml:id
="
echoid-s4100
"
xml:space
="
preserve
">proportio autem o ad q cõpoſita eſt ex pro-
<
lb
/>
portione o ad p, & </
s
>
<
s
xml:id
="
echoid-s4101
"
xml:space
="
preserve
">ex proportione p ad q. </
s
>
<
s
xml:id
="
echoid-s4102
"
xml:space
="
preserve
">quare priſma
<
lb
/>
a e ad priſma g m, & </
s
>
<
s
xml:id
="
echoid-s4103
"
xml:space
="
preserve
">idcirco pyramis a b c d e, ad pyrami-
<
lb
/>
dem g h K l m proportionem habet ex eiſdem proportio-
<
lb
/>
nibus compoſitam, uidelicet ex proportione baſis a b c d
<
lb
/>
ad baſim g h _K_ l, & </
s
>
<
s
xml:id
="
echoid-s4104
"
xml:space
="
preserve
">ex proportione altitudinis e f ad m n al
<
lb
/>
titudinem. </
s
>
<
s
xml:id
="
echoid-s4105
"
xml:space
="
preserve
">Quòd ſi lineæ e f, m n inæquales ponantur, ſit
<
lb
/>
e f minor: </
s
>
<
s
xml:id
="
echoid-s4106
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4107
"
xml:space
="
preserve
">ut e f ad m n, ita fiat linea p ad lineam u: </
s
>
<
s
xml:id
="
echoid-s4108
"
xml:space
="
preserve
">de
<
lb
/>
<
figure
xlink:label
="
fig-0165-01
"
xlink:href
="
fig-0165-01a
"
number
="
121
">
<
image
file
="
0165-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0165-01
"/>
</
figure
>
inde ab ipſa m n abſcindatur r n æqualis e f: </
s
>
<
s
xml:id
="
echoid-s4109
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4110
"
xml:space
="
preserve
">per r duca-
<
lb
/>
tur planum, quod oppoſitis planis æquidiſtans faciat ſe-
<
lb
/>
ctionem s t. </
s
>
<
s
xml:id
="
echoid-s4111
"
xml:space
="
preserve
">erit priſma a e, ad priſma g t, ut baſis a b c d
<
lb
/>
ad baſim g h k l; </
s
>
<
s
xml:id
="
echoid-s4112
"
xml:space
="
preserve
">hoc eſt ut o ad p: </
s
>
<
s
xml:id
="
echoid-s4113
"
xml:space
="
preserve
">ut autem priſma g t ad
<
lb
/>
priſma g m, ita altitudo r n; </
s
>
<
s
xml:id
="
echoid-s4114
"
xml:space
="
preserve
">hoc eſt e f ad altitudinẽ m n;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4115
"
xml:space
="
preserve
">
<
note
position
="
right
"
xlink:label
="
note-0165-01
"
xlink:href
="
note-0165-01a
"
xml:space
="
preserve
">20. huius</
note
>
uidelicet linea p ad lineam u. </
s
>
<
s
xml:id
="
echoid-s4116
"
xml:space
="
preserve
">ergo ex æquali priſma a e ad
<
lb
/>
priſma g m eſt, ut linea o ad ipſam u. </
s
>
<
s
xml:id
="
echoid-s4117
"
xml:space
="
preserve
">Sed proportio o ad
<
lb
/>
u cõpoſita eſt ex proportione o ad p, quæ eſt baſis a b c d
<
lb
/>
ad baſim g h k l; </
s
>
<
s
xml:id
="
echoid-s4118
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4119
"
xml:space
="
preserve
">ex proportione p ad u, quæ eſt altitudi-
<
lb
/>
nis e f ad altitudinem m n. </
s
>
<
s
xml:id
="
echoid-s4120
"
xml:space
="
preserve
">priſma igitur a e ad priſma g </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>