Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
< >
page |< < (31) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="89">
          <pb o="31" file="0173" n="173" rhead="DE CENTRO GRAVIT. SOLID."/>
          <p>
            <s xml:space="preserve">SIT fruſtum pyramidis a e, cuius maior baſis triangu-
              <lb/>
            lum a b c, minor d e f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">oporteat ipſum plano, quod baſi
              <lb/>
            æquidiſtet, ita ſecare, ut ſectio ſit proportionalis inter triã
              <lb/>
            gula a b c, d e f. </s>
            <s xml:space="preserve">Inueniatur inter lineas a b, d e media pro-
              <lb/>
            portionalis, quæ ſit b g: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">à puncto g erigatur g h æquidi-
              <lb/>
            ſtans b e, ſecansq; </s>
            <s xml:space="preserve">a d in h: </s>
            <s xml:space="preserve">deinde per h ducatur planum
              <lb/>
            baſibus æ quidiſtans, cuius ſectio ſit triangulum h _k_ 1. </s>
            <s xml:space="preserve">Dico
              <lb/>
            triangulum h K l proportionale eſſe inter triangula a b c,
              <lb/>
            d e f, hoc eſt triangulum a b c ad
              <lb/>
              <anchor type="figure" xlink:label="fig-0173-01a" xlink:href="fig-0173-01"/>
            triangulum h K l eandem habere
              <lb/>
            proportionem, quam triãgulum
              <lb/>
            h K l ad ipſum d e f. </s>
            <s xml:space="preserve">Quoniã enim
              <lb/>
            lineæ a b, h K æquidiſtantium pla
              <lb/>
              <anchor type="note" xlink:label="note-0173-01a" xlink:href="note-0173-01"/>
            norum ſectiones inter ſe æquidi-
              <lb/>
            ſtant: </s>
            <s xml:space="preserve">atque æquidiſtant b _k_, g h:
              <lb/>
            </s>
            <s xml:space="preserve">linea h _k_ ipſi g b eſt æqualis: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">pro
              <lb/>
              <anchor type="note" xlink:label="note-0173-02a" xlink:href="note-0173-02"/>
            pterea proportionalis inter a b,
              <lb/>
            d e. </s>
            <s xml:space="preserve">quare ut a b ad h K, ita eſt h
              <emph style="sc">K</emph>
              <lb/>
            ad d e. </s>
            <s xml:space="preserve">fiat ut h k ad d e, ita d e
              <lb/>
            ad aliam lineam, in qua ſit m. </s>
            <s xml:space="preserve">erit
              <lb/>
            ex æquali ut a b ad d e, ita h k ad
              <lb/>
            m. </s>
            <s xml:space="preserve">Et quoniam triangula a b c,
              <lb/>
              <anchor type="note" xlink:label="note-0173-03a" xlink:href="note-0173-03"/>
            h K l, d e f ſimilia ſunt; </s>
            <s xml:space="preserve">triangulū
              <lb/>
            a b c ad triangulum h k l eſt, ut li-
              <lb/>
              <anchor type="note" xlink:label="note-0173-04a" xlink:href="note-0173-04"/>
            nea a b ad lineam d e: </s>
            <s xml:space="preserve">triangulũ
              <lb/>
            autem h k l ad ipſum d e f eſt, ut h _k_ ad m. </s>
            <s xml:space="preserve">ergo tríangulum
              <lb/>
              <anchor type="note" xlink:label="note-0173-05a" xlink:href="note-0173-05"/>
            a b c ad triangulum h k l eandem proportionem habet,
              <lb/>
            quam triangulum h K l ad ipſum d e f. </s>
            <s xml:space="preserve">Eodem modo in a-
              <lb/>
            liis fruſtis pyramidis idem demonſtrabitur.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0173-01" xlink:href="fig-0173-01a">
              <image file="0173-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0173-01"/>
            </figure>
            <note position="right" xlink:label="note-0173-01" xlink:href="note-0173-01a" xml:space="preserve">16. unde
              <lb/>
            cimi</note>
            <note position="right" xlink:label="note-0173-02" xlink:href="note-0173-02a" xml:space="preserve">34. primi</note>
            <note position="right" xlink:label="note-0173-03" xlink:href="note-0173-03a" xml:space="preserve">9. huius
              <lb/>
            corol.</note>
            <note position="right" xlink:label="note-0173-04" xlink:href="note-0173-04a" xml:space="preserve">20. ſexti</note>
            <note position="right" xlink:label="note-0173-05" xlink:href="note-0173-05a" xml:space="preserve">11. quinti</note>
          </div>
          <p>
            <s xml:space="preserve">Sit fruſtum coni, uel coni portionis a d: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſecetur plano
              <lb/>
            per axem, cuius ſectio ſit a b c d, ita ut maior ipſius baſis ſit
              <lb/>
            circulus, uel ellipſis circa diametrum a b; </s>
            <s xml:space="preserve">minor circa c d.
              <lb/>
            </s>
            <s xml:space="preserve">Rurſus inter lineas a b, c d inueniatur proportionalis b e: </s>
            <s xml:space="preserve">
              <lb/>
            & </s>
            <s xml:space="preserve">ab e ducta e ſ æquid_i_ſtante b d, quæ lineam c a in f ſecet,</s>
          </p>
        </div>
      </text>
    </echo>