Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="90">
          <p>
            <s xml:space="preserve">
              <pb file="0176" n="176" rhead="FED. COMMANDINI"/>
            pyramidem, uel conum, uel coni portionem candem pro-
              <lb/>
            portionem habet, quam baſes ab, cd unà cum e ſ ad ba-
              <lb/>
            ſim a b. </s>
            <s xml:space="preserve">quod demonſtrare uolebamus.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0175-01" xlink:href="fig-0175-01a">
              <image file="0175-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0175-01"/>
            </figure>
            <figure xlink:label="fig-0175-02" xlink:href="fig-0175-02a">
              <image file="0175-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0175-02"/>
            </figure>
            <note position="right" xlink:label="note-0175-01" xlink:href="note-0175-01a" xml:space="preserve">6. 11. duo
              <lb/>
            decimi</note>
          </div>
          <p>
            <s xml:space="preserve">Fruſtum uero a d æquale eſſe pyramidi, uel co
              <lb/>
            no, uel coni portioni, cuius baſis conſtat ex baſi-
              <lb/>
            bus a b, c d, e f, & </s>
            <s xml:space="preserve">altitudo fruſti altitudini eſt æ-
              <lb/>
            qualis, hoc modo oſten demus.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Sit fruſtum pyramidis a b c d e f, cuius maior baſis trian-
              <lb/>
            gulum a b c; </s>
            <s xml:space="preserve">minor d e f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſecetur plano baſibus æquidi-
              <lb/>
            ſtante, quod ſectionem faciat triangulum g h k inter trian-
              <lb/>
            gula a b c, d e f proportionale. </s>
            <s xml:space="preserve">Iam ex iis, quæ demonſtrata
              <lb/>
            ſuntin 23. </s>
            <s xml:space="preserve">huius, patet ſruſtum a b c d e f diuidi in tres pyra
              <lb/>
            mides proportionales; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">earum maiorem eſſe pyramidẽ
              <lb/>
            a b c d minorẽ uero d e f b. </s>
            <s xml:space="preserve">ergo pyramis à triangulo g h k
              <lb/>
            conſtituta, quæ altitudinem habeat ſruſti altitudini æqua-
              <lb/>
            lem, proportionalis eſtinter pyramides a b c d, d e f b: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            idcirco fruſtum a b c d e f tribus dictis pyramidibus æqua
              <lb/>
            le erit. </s>
            <s xml:space="preserve">Itaque ſi intelligatur alia pyra-
              <lb/>
              <anchor type="figure" xlink:label="fig-0176-01a" xlink:href="fig-0176-01"/>
            mis æque alta, quæ baſim habeat ex tri
              <lb/>
            bus baſibus a b c, d e f, g h k conſtan-
              <lb/>
            tem; </s>
            <s xml:space="preserve">perſpicuum eſtipſam eiſdem py-
              <lb/>
            ramidibus, & </s>
            <s xml:space="preserve">propterea ipſi fruſto æ-
              <lb/>
            qualem eſſe.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="2">
            <figure xlink:label="fig-0176-01" xlink:href="fig-0176-01a">
              <image file="0176-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0176-01"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Rurſus ſit ſruſtum pyramidis a g, cu
              <lb/>
            ius maior baſis quadrilaterum a b c d,
              <lb/>
            minor e f g h: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſecetur plano baſi-
              <lb/>
            bus æquidiſtante, ita ut fiat ſectio qua-
              <lb/>
            drilaterum K lm n, quod ſit proportio
              <lb/>
            nale inter quadrilatera a b c d, e f g h. </s>
            <s xml:space="preserve">Dico pyramidem,
              <lb/>
            cuius baſis ſit æqualis tribus quadrilateris a b c d, _k_ l m n,
              <lb/>
            e f g h, & </s>
            <s xml:space="preserve">altitudo æqualis altitudini fruſti, ipſi fruſto a g
              <lb/>
            æqualem eſſe. </s>
            <s xml:space="preserve">Ducatur enim planum per lineas f b, h d,</s>
          </p>
        </div>
      </text>
    </echo>