Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
161
25
162
163
26
164
165
27
166
167
28
168
169
29
170
171
30
172
173
31
174
175
32
176
177
33
178
179
34
180
181
35
182
183
36
184
185
37
186
187
38
188
189
39
190
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(32)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div263
"
type
="
section
"
level
="
1
"
n
="
90
">
<
pb
o
="
32
"
file
="
0175
"
n
="
175
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
<
p
>
<
s
xml:id
="
echoid-s4367
"
xml:space
="
preserve
">SIT fruſtũ pyramidis, uel coni, uel coni portionis a d,
<
lb
/>
cuius maior baſis a b, minor c d. </
s
>
<
s
xml:id
="
echoid-s4368
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4369
"
xml:space
="
preserve
">ſecetur altero plano
<
lb
/>
baſi æquidiſtante, ita utſectio e f ſit proportionalis inter
<
lb
/>
baſes a b, c d. </
s
>
<
s
xml:id
="
echoid-s4370
"
xml:space
="
preserve
">conſtituatur autẽ pyramis, uel conus, uel co-
<
lb
/>
ni portio a g b, cuius baſis ſit eadem, quæ baſis maior fru-
<
lb
/>
ſti, & </
s
>
<
s
xml:id
="
echoid-s4371
"
xml:space
="
preserve
">altitudo æqualis. </
s
>
<
s
xml:id
="
echoid-s4372
"
xml:space
="
preserve
">Di-
<
lb
/>
<
figure
xlink:label
="
fig-0175-01
"
xlink:href
="
fig-0175-01a
"
number
="
129
">
<
image
file
="
0175-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0175-01
"/>
</
figure
>
co fruſtum a d ad pyrami-
<
lb
/>
dem, uel conum, uel coni
<
lb
/>
portionem a g b eandem
<
lb
/>
proportionẽ habere, quã
<
lb
/>
utræque baſes, a b, c d unà
<
lb
/>
cum e f ad baſim a b. </
s
>
<
s
xml:id
="
echoid-s4373
"
xml:space
="
preserve
">eſt
<
lb
/>
enim fruſtum a d æquale
<
lb
/>
pyramidi, uel cono, uel co-
<
lb
/>
ni portioni, cuius baſis ex
<
lb
/>
tribus baſibus a b, e f, c d
<
lb
/>
conſtat; </
s
>
<
s
xml:id
="
echoid-s4374
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4375
"
xml:space
="
preserve
">altitudo ipſius
<
lb
/>
altitudini eſt æqualis: </
s
>
<
s
xml:id
="
echoid-s4376
"
xml:space
="
preserve
">quod mox oſtendemus. </
s
>
<
s
xml:id
="
echoid-s4377
"
xml:space
="
preserve
">Sed pyrami
<
lb
/>
des, coni, uel coni portiões,
<
lb
/>
<
figure
xlink:label
="
fig-0175-02
"
xlink:href
="
fig-0175-02a
"
number
="
130
">
<
image
file
="
0175-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0175-02
"/>
</
figure
>
quæ ſunt æquali altitudine,
<
lb
/>
eãdem inter ſe, quam baſes,
<
lb
/>
proportionem habent, ſicu-
<
lb
/>
ti demonſtratum eſt, partim
<
lb
/>
ab Euclide in duodecimo li-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0175-01
"
xlink:href
="
note-0175-01a
"
xml:space
="
preserve
">6. 11. duo
<
lb
/>
decimi</
note
>
bro elementorum, partim à
<
lb
/>
nobis in cõmentariis in un-
<
lb
/>
decimam propoſitionẽ Ar-
<
lb
/>
chimedis de conoidibus, & </
s
>
<
s
xml:id
="
echoid-s4378
"
xml:space
="
preserve
">
<
lb
/>
ſphæroidibus. </
s
>
<
s
xml:id
="
echoid-s4379
"
xml:space
="
preserve
">quare pyra-
<
lb
/>
mis, uel conus, uel coni por-
<
lb
/>
tio, cuius baſis eſt tribus illis
<
lb
/>
baſibus æqualis ad a g b eam
<
lb
/>
habet proportionem, quam
<
lb
/>
baſes a b, e f, c d ad ab bafim. </
s
>
<
s
xml:id
="
echoid-s4380
"
xml:space
="
preserve
">Fruſtum igitur a d ad a g </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>