Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
171
30
172
173
31
174
175
32
176
177
33
178
179
34
180
181
35
182
183
36
184
185
37
186
187
38
188
189
39
190
191
40
192
193
41
194
195
42
196
197
43
198
199
44
200
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div263
"
type
="
section
"
level
="
1
"
n
="
90
">
<
p
>
<
s
xml:id
="
echoid-s4380
"
xml:space
="
preserve
">
<
pb
file
="
0176
"
n
="
176
"
rhead
="
FED. COMMANDINI
"/>
pyramidem, uel conum, uel coni portionem candem pro-
<
lb
/>
portionem habet, quam baſes ab, cd unà cum e ſ ad ba-
<
lb
/>
ſim a b. </
s
>
<
s
xml:id
="
echoid-s4381
"
xml:space
="
preserve
">quod demonſtrare uolebamus.</
s
>
<
s
xml:id
="
echoid-s4382
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4383
"
xml:space
="
preserve
">Fruſtum uero a d æquale eſſe pyramidi, uel co
<
lb
/>
no, uel coni portioni, cuius baſis conſtat ex baſi-
<
lb
/>
bus a b, c d, e f, & </
s
>
<
s
xml:id
="
echoid-s4384
"
xml:space
="
preserve
">altitudo fruſti altitudini eſt æ-
<
lb
/>
qualis, hoc modo oſten demus.</
s
>
<
s
xml:id
="
echoid-s4385
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4386
"
xml:space
="
preserve
">Sit fruſtum pyramidis a b c d e f, cuius maior baſis trian-
<
lb
/>
gulum a b c; </
s
>
<
s
xml:id
="
echoid-s4387
"
xml:space
="
preserve
">minor d e f: </
s
>
<
s
xml:id
="
echoid-s4388
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4389
"
xml:space
="
preserve
">ſecetur plano baſibus æquidi-
<
lb
/>
ſtante, quod ſectionem faciat triangulum g h k inter trian-
<
lb
/>
gula a b c, d e f proportionale. </
s
>
<
s
xml:id
="
echoid-s4390
"
xml:space
="
preserve
">Iam ex iis, quæ demonſtrata
<
lb
/>
ſuntin 23. </
s
>
<
s
xml:id
="
echoid-s4391
"
xml:space
="
preserve
">huius, patet ſruſtum a b c d e f diuidi in tres pyra
<
lb
/>
mides proportionales; </
s
>
<
s
xml:id
="
echoid-s4392
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4393
"
xml:space
="
preserve
">earum maiorem eſſe pyramidẽ
<
lb
/>
a b c d minorẽ uero d e f b. </
s
>
<
s
xml:id
="
echoid-s4394
"
xml:space
="
preserve
">ergo pyramis à triangulo g h k
<
lb
/>
conſtituta, quæ altitudinem habeat ſruſti altitudini æqua-
<
lb
/>
lem, proportionalis eſtinter pyramides a b c d, d e f b: </
s
>
<
s
xml:id
="
echoid-s4395
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4396
"
xml:space
="
preserve
">
<
lb
/>
idcirco fruſtum a b c d e f tribus dictis pyramidibus æqua
<
lb
/>
le erit. </
s
>
<
s
xml:id
="
echoid-s4397
"
xml:space
="
preserve
">Itaque ſi intelligatur alia pyra-
<
lb
/>
<
figure
xlink:label
="
fig-0176-01
"
xlink:href
="
fig-0176-01a
"
number
="
131
">
<
image
file
="
0176-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0176-01
"/>
</
figure
>
mis æque alta, quæ baſim habeat ex tri
<
lb
/>
bus baſibus a b c, d e f, g h k conſtan-
<
lb
/>
tem; </
s
>
<
s
xml:id
="
echoid-s4398
"
xml:space
="
preserve
">perſpicuum eſtipſam eiſdem py-
<
lb
/>
ramidibus, & </
s
>
<
s
xml:id
="
echoid-s4399
"
xml:space
="
preserve
">propterea ipſi fruſto æ-
<
lb
/>
qualem eſſe.</
s
>
<
s
xml:id
="
echoid-s4400
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4401
"
xml:space
="
preserve
">Rurſus ſit ſruſtum pyramidis a g, cu
<
lb
/>
ius maior baſis quadrilaterum a b c d,
<
lb
/>
minor e f g h: </
s
>
<
s
xml:id
="
echoid-s4402
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4403
"
xml:space
="
preserve
">ſecetur plano baſi-
<
lb
/>
bus æquidiſtante, ita ut fiat ſectio qua-
<
lb
/>
drilaterum K lm n, quod ſit proportio
<
lb
/>
nale inter quadrilatera a b c d, e f g h. </
s
>
<
s
xml:id
="
echoid-s4404
"
xml:space
="
preserve
">Dico pyramidem,
<
lb
/>
cuius baſis ſit æqualis tribus quadrilateris a b c d, _k_ l m n,
<
lb
/>
e f g h, & </
s
>
<
s
xml:id
="
echoid-s4405
"
xml:space
="
preserve
">altitudo æqualis altitudini fruſti, ipſi fruſto a g
<
lb
/>
æqualem eſſe. </
s
>
<
s
xml:id
="
echoid-s4406
"
xml:space
="
preserve
">Ducatur enim planum per lineas f b, h </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>