Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
171
30
172
173
31
174
175
32
176
177
33
178
179
34
180
181
35
182
183
36
184
185
37
186
187
38
188
189
39
190
191
40
192
193
41
194
195
42
196
197
43
198
199
44
200
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div272
"
type
="
section
"
level
="
1
"
n
="
92
">
<
p
>
<
s
xml:id
="
echoid-s4708
"
xml:space
="
preserve
">
<
pb
file
="
0188
"
n
="
188
"
rhead
="
FED. COMMANDINI
"/>
At cum e f ſit ſexta pars axis
<
lb
/>
<
figure
xlink:label
="
fig-0188-01
"
xlink:href
="
fig-0188-01a
"
number
="
138
">
<
image
file
="
0188-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0188-01
"/>
</
figure
>
ſphæræ, crit d e tripla e f. </
s
>
<
s
xml:id
="
echoid-s4709
"
xml:space
="
preserve
">ergo
<
lb
/>
punctum e eſt grauitatis cen-
<
lb
/>
trum ipſius pyramidis: </
s
>
<
s
xml:id
="
echoid-s4710
"
xml:space
="
preserve
">quod
<
lb
/>
in uigeſima ſecunda huius de-
<
lb
/>
monſtratum fuit. </
s
>
<
s
xml:id
="
echoid-s4711
"
xml:space
="
preserve
">Sed e eſt cen
<
lb
/>
trum ſphæræ. </
s
>
<
s
xml:id
="
echoid-s4712
"
xml:space
="
preserve
">Sequitur igitur,
<
lb
/>
ut centrum grauitatis pyrami-
<
lb
/>
dis in ſphæra deſcriptæ idem
<
lb
/>
ſit, quod ipſius ſphæræ cen-
<
lb
/>
trum.</
s
>
<
s
xml:id
="
echoid-s4713
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4714
"
xml:space
="
preserve
">Sit cubus in ſphæra deſcriptus a b, & </
s
>
<
s
xml:id
="
echoid-s4715
"
xml:space
="
preserve
">oppoſitorum pla-
<
lb
/>
norum lateribus bifariam diuiſis, per puncta diuiſionum
<
lb
/>
plana ducantur, ut communis ipſorum ſectio ſit recta li-
<
lb
/>
nea c d. </
s
>
<
s
xml:id
="
echoid-s4716
"
xml:space
="
preserve
">Itaque ſi ducatur a b, ſolidi ſcilicet diameter, lineæ
<
lb
/>
a b, c d ex trigeſimanona undecimi ſeſe bifariam ſecabunt.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4717
"
xml:space
="
preserve
">ſecent autem in puncto e. </
s
>
<
s
xml:id
="
echoid-s4718
"
xml:space
="
preserve
">erit
<
lb
/>
<
figure
xlink:label
="
fig-0188-02
"
xlink:href
="
fig-0188-02a
"
number
="
139
">
<
image
file
="
0188-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0188-02
"/>
</
figure
>
e centrũ grauitatis ſolidi a b,
<
lb
/>
id quod demonſtratum eſt in
<
lb
/>
octaua huius. </
s
>
<
s
xml:id
="
echoid-s4719
"
xml:space
="
preserve
">Sed quoniam ab
<
lb
/>
eſt ſphæræ diametro æqualis,
<
lb
/>
ut in decima quinta propoſi-
<
lb
/>
tione tertii decimi libri elemẽ
<
lb
/>
torum oſtenditur: </
s
>
<
s
xml:id
="
echoid-s4720
"
xml:space
="
preserve
">punctum e
<
lb
/>
ſphæræ quoque centrum erit.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4721
"
xml:space
="
preserve
">Cubi igitur in ſphæra deſcri-
<
lb
/>
pti grauitatis centrum idem
<
lb
/>
eſt, quod centrum ipſius ſphæræ.</
s
>
<
s
xml:id
="
echoid-s4722
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4723
"
xml:space
="
preserve
">Sit octahedrum a b c d e f, in ſphæra deſcriptum, cuius
<
lb
/>
ſphæræ centrum ſit g. </
s
>
<
s
xml:id
="
echoid-s4724
"
xml:space
="
preserve
">Dico punctum g ipſius octahedri
<
lb
/>
grauitatis centrum eſſe. </
s
>
<
s
xml:id
="
echoid-s4725
"
xml:space
="
preserve
">Conſtat enim ex iis, quæ demon-
<
lb
/>
ſtrata ſunt à Campano in quinto decimo libro elemento-
<
lb
/>
rum, propoſitione ſextadecima eiuſimodi ſolidum diuidi
<
lb
/>
in duas pyramides æquales, & </
s
>
<
s
xml:id
="
echoid-s4726
"
xml:space
="
preserve
">ſimiles; </
s
>
<
s
xml:id
="
echoid-s4727
"
xml:space
="
preserve
">uidelicetin </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>