Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
191 40
192
193 41
194
195 42
196
197 43
198
199 44
200
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div272" type="section" level="1" n="92">
          <p>
            <s xml:id="echoid-s4708" xml:space="preserve">
              <pb file="0188" n="188" rhead="FED. COMMANDINI"/>
            At cum e f ſit ſexta pars axis
              <lb/>
              <figure xlink:label="fig-0188-01" xlink:href="fig-0188-01a" number="138">
                <image file="0188-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0188-01"/>
              </figure>
            ſphæræ, crit d e tripla e f. </s>
            <s xml:id="echoid-s4709" xml:space="preserve">ergo
              <lb/>
            punctum e eſt grauitatis cen-
              <lb/>
            trum ipſius pyramidis: </s>
            <s xml:id="echoid-s4710" xml:space="preserve">quod
              <lb/>
            in uigeſima ſecunda huius de-
              <lb/>
            monſtratum fuit. </s>
            <s xml:id="echoid-s4711" xml:space="preserve">Sed e eſt cen
              <lb/>
            trum ſphæræ. </s>
            <s xml:id="echoid-s4712" xml:space="preserve">Sequitur igitur,
              <lb/>
            ut centrum grauitatis pyrami-
              <lb/>
            dis in ſphæra deſcriptæ idem
              <lb/>
            ſit, quod ipſius ſphæræ cen-
              <lb/>
            trum.</s>
            <s xml:id="echoid-s4713" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4714" xml:space="preserve">Sit cubus in ſphæra deſcriptus a b, & </s>
            <s xml:id="echoid-s4715" xml:space="preserve">oppoſitorum pla-
              <lb/>
            norum lateribus bifariam diuiſis, per puncta diuiſionum
              <lb/>
            plana ducantur, ut communis ipſorum ſectio ſit recta li-
              <lb/>
            nea c d. </s>
            <s xml:id="echoid-s4716" xml:space="preserve">Itaque ſi ducatur a b, ſolidi ſcilicet diameter, lineæ
              <lb/>
            a b, c d ex trigeſimanona undecimi ſeſe bifariam ſecabunt.
              <lb/>
            </s>
            <s xml:id="echoid-s4717" xml:space="preserve">ſecent autem in puncto e. </s>
            <s xml:id="echoid-s4718" xml:space="preserve">erit
              <lb/>
              <figure xlink:label="fig-0188-02" xlink:href="fig-0188-02a" number="139">
                <image file="0188-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0188-02"/>
              </figure>
            e centrũ grauitatis ſolidi a b,
              <lb/>
            id quod demonſtratum eſt in
              <lb/>
            octaua huius. </s>
            <s xml:id="echoid-s4719" xml:space="preserve">Sed quoniam ab
              <lb/>
            eſt ſphæræ diametro æqualis,
              <lb/>
            ut in decima quinta propoſi-
              <lb/>
            tione tertii decimi libri elemẽ
              <lb/>
            torum oſtenditur: </s>
            <s xml:id="echoid-s4720" xml:space="preserve">punctum e
              <lb/>
            ſphæræ quoque centrum erit.
              <lb/>
            </s>
            <s xml:id="echoid-s4721" xml:space="preserve">Cubi igitur in ſphæra deſcri-
              <lb/>
            pti grauitatis centrum idem
              <lb/>
            eſt, quod centrum ipſius ſphæræ.</s>
            <s xml:id="echoid-s4722" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4723" xml:space="preserve">Sit octahedrum a b c d e f, in ſphæra deſcriptum, cuius
              <lb/>
            ſphæræ centrum ſit g. </s>
            <s xml:id="echoid-s4724" xml:space="preserve">Dico punctum g ipſius octahedri
              <lb/>
            grauitatis centrum eſſe. </s>
            <s xml:id="echoid-s4725" xml:space="preserve">Conſtat enim ex iis, quæ demon-
              <lb/>
            ſtrata ſunt à Campano in quinto decimo libro elemento-
              <lb/>
            rum, propoſitione ſextadecima eiuſimodi ſolidum diuidi
              <lb/>
            in duas pyramides æquales, & </s>
            <s xml:id="echoid-s4726" xml:space="preserve">ſimiles; </s>
            <s xml:id="echoid-s4727" xml:space="preserve">uidelicetin </s>
          </p>
        </div>
      </text>
    </echo>