Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
191 40
192
193 41
194
195 42
196
197 43
198
199 44
200
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div278" type="section" level="1" n="93">
          <p>
            <s xml:id="echoid-s4878" xml:space="preserve">
              <pb file="0194" n="194" rhead="FED. COMMANDINI"/>
            tionem cadet: </s>
            <s xml:id="echoid-s4879" xml:space="preserve">Itaque cum à portione conoidis, cuius gra-
              <lb/>
            uitatis centrum e auferatur inſcripta figura, centrum ha-
              <lb/>
            bens p: </s>
            <s xml:id="echoid-s4880" xml:space="preserve">& </s>
            <s xml:id="echoid-s4881" xml:space="preserve">ſit l e ad e p, ut figura inſcripta ad portiones reli
              <lb/>
            quas: </s>
            <s xml:id="echoid-s4882" xml:space="preserve">erit magnitudinis, quæ ex reliquis portionibus con
              <lb/>
            ſtat, centrum grauitatis punctum l, extra portionem ca-
              <lb/>
            dens. </s>
            <s xml:id="echoid-s4883" xml:space="preserve">quod fieri nequit. </s>
            <s xml:id="echoid-s4884" xml:space="preserve">ergo linea p e minor eſt ip ſa g li-
              <lb/>
            nea propoſita.</s>
            <s xml:id="echoid-s4885" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4886" xml:space="preserve">Ex quibus perſpicuum eſt centrum grauitatis
              <lb/>
            figuræ inſcriptæ, & </s>
            <s xml:id="echoid-s4887" xml:space="preserve">circumſcriptæ eo magis acce
              <lb/>
            dere ad portionis centrum, quo pluribus cylin-
              <lb/>
            dris, uel cylindri portionibus conſtet: </s>
            <s xml:id="echoid-s4888" xml:space="preserve">fiatq́ figu
              <lb/>
            ra inſcripta maior, & </s>
            <s xml:id="echoid-s4889" xml:space="preserve">circumſcripta minor. </s>
            <s xml:id="echoid-s4890" xml:space="preserve">& </s>
            <s xml:id="echoid-s4891" xml:space="preserve">
              <lb/>
            quanquam continenter ad portionis centrū pro-
              <lb/>
            pius admoueatur nunquam tamen ad ipſum per
              <lb/>
            ueniet. </s>
            <s xml:id="echoid-s4892" xml:space="preserve">ſequeretur enim figuram inſcriptam, nó
              <lb/>
            ſolum portioni, ſed etiam circumſcriptæ figuræ
              <lb/>
            æqualem eſſe. </s>
            <s xml:id="echoid-s4893" xml:space="preserve">quod eſt abſurdum.</s>
            <s xml:id="echoid-s4894" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div281" type="section" level="1" n="94">
          <head xml:id="echoid-head101" xml:space="preserve">THE OREMA XXIII. PROPOSITIO XXIX.</head>
          <p>
            <s xml:id="echoid-s4895" xml:space="preserve">
              <emph style="sc">Cvivslibet</emph>
            portionis conoidis rectangu-
              <lb/>
            li axis à cẽtro grauitatis ita diuiditur, ut pars quæ
              <lb/>
            terminatur ad uerticem, reliquæ partis, quæ ad ba
              <lb/>
            ſim ſit dupla.</s>
            <s xml:id="echoid-s4896" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4897" xml:space="preserve">SIT portio conoidis rectanguli uel abſciſſa plano ad
              <lb/>
            axem recto, uel non recto: </s>
            <s xml:id="echoid-s4898" xml:space="preserve">& </s>
            <s xml:id="echoid-s4899" xml:space="preserve">ſecta ipſa altero plano per axé
              <lb/>
            ſit ſuperſiciei ſe ctio a b c r ectanguli coni ſectio, uel parabo
              <lb/>
            le; </s>
            <s xml:id="echoid-s4900" xml:space="preserve">plani abſcindentis portionem ſectio ſit recta linea a c:
              <lb/>
            </s>
            <s xml:id="echoid-s4901" xml:space="preserve">axis portionis, & </s>
            <s xml:id="echoid-s4902" xml:space="preserve">ſectionis diameter b d. </s>
            <s xml:id="echoid-s4903" xml:space="preserve">Sumatur autem
              <lb/>
            in linea b d punctum e, ita ut b e ſit ipſius e d dupla. </s>
            <s xml:id="echoid-s4904" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>