Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
191 40
192
193 41
194
195 42
196
197 43
198
199 44
200
< >
page |< < (44) of 213 > >|
DE IIS QVAE VEH. IN AQVA.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="56">
          <p>
            <s xml:space="preserve">
              <pb o="44" file="0099" n="99" rhead="DE IIS QVAE VEH. IN AQVA."/>
            gura: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">alia eadem diſponantur demonſtrabimus rurſum
              <lb/>
            n t æqualem eſſe ipſi u i: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">portiones a u q, a n z inter
              <lb/>
            ſe ſe æquales.
              <lb/>
            </s>
            <s xml:space="preserve">
              <anchor type="figure" xlink:label="fig-0099-01a" xlink:href="fig-0099-01"/>
            Itaque quoniã
              <lb/>
            ĩ portionibus
              <lb/>
            æqualibus, & </s>
            <s xml:space="preserve">ſi
              <lb/>
            milibus a u q l,
              <lb/>
            a n z g ductæ
              <lb/>
            sũt a q, a z, por
              <lb/>
            tiones æqua-
              <lb/>
            les auferentes;
              <lb/>
            </s>
            <s xml:space="preserve">cum diametris
              <lb/>
            portionum æ-
              <lb/>
            quales angu-
              <lb/>
            los cõtinebũt. </s>
            <s xml:space="preserve">
              <lb/>
            ergo triangulo
              <lb/>
            rum n l s, u ω c
              <lb/>
            anguli, qui cõ-
              <lb/>
            ſiſtũt ad l ω pũ-
              <lb/>
            cta, æquales ſunt: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">b s recta linea æqualis ipſi b c: </s>
            <s xml:space="preserve">ſ r ipſi cr,
              <lb/>
            n χ ipſi u h: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">χ tipſi h i. </s>
            <s xml:space="preserve">quòd cum u y dupla ſit ipſius y i,
              <lb/>
            erit n χ maior, quàm dupla χ t. </s>
            <s xml:space="preserve">Sit igitur n m ipſius m t du
              <lb/>
            pla. </s>
            <s xml:space="preserve">Rurſus ex his manifeſtum eſt, non manere ipſam por-
              <lb/>
            tionem; </s>
            <s xml:space="preserve">ſed inclinari ex parte a: </s>
            <s xml:space="preserve">ponebatur autem portio
              <lb/>
            humidi ſuperficiem in uno puncto contingere. </s>
            <s xml:space="preserve">ergo ne-
              <lb/>
            ceſſe eſt, ut eius baſis in humidum magis demergatur.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0097-01" xlink:href="fig-0097-01a">
              <image file="0097-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0097-01"/>
            </figure>
            <figure xlink:label="fig-0098-01" xlink:href="fig-0098-01a">
              <image file="0098-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0098-01"/>
            </figure>
            <figure xlink:label="fig-0099-01" xlink:href="fig-0099-01a">
              <image file="0099-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0099-01"/>
            </figure>
          </div>
        </div>
        <div type="section" level="1" n="57">
          <head xml:space="preserve">DEMONSTRATIO QVINT AE PARTIS.</head>
          <p>
            <s xml:space="preserve">HABEAT denique portio ad humidum in grauitate
              <lb/>
            minorem proportionem, quàm quadratum f p ad quadra-
              <lb/>
            tum b d: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quam proportionem habet portio ad humidũ
              <lb/>
            in grauitate, eandem quadratum, quod fit à linea ψ habeat
              <lb/>
            ad quadratum b d. </s>
            <s xml:space="preserve">erit χ minor ipſa p f. </s>
            <s xml:space="preserve">Rurſus aptetur</s>
          </p>
        </div>
      </text>
    </echo>