Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
191 40
192
193 41
194
195 42
196
197 43
198
199 44
200
201 45
202
203 46
204
205 47
206
207
208
209
210
< >
page |< < (7) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="68">
          <p>
            <s xml:space="preserve">
              <pb o="7" file="0125" n="125" rhead="DE CENTRO GRAVIT. SOLID."/>
            metrum habens e d. </s>
            <s xml:space="preserve">Quoniam igitur circuli uel ellipſis
              <lb/>
            a e c b grauitatis centrum eſt in diametro b e, & </s>
            <s xml:space="preserve">portio-
              <lb/>
            nis a e c centrum in linea e d: </s>
            <s xml:space="preserve">reliquæ portionis, uidelicet
              <lb/>
            a b c centrum grauitatis in ipſa b d conſiſtat neceſſe eſt, ex
              <lb/>
            octaua propoſitione eiuſdem.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
        <div type="section" level="1" n="69">
          <head xml:space="preserve">THEOREMA V. PROPOSITIO V.</head>
          <p>
            <s xml:space="preserve">SI priſma ſecetur plano oppoſitis planis æqui
              <lb/>
            diſtante, ſectio erit figura æqualis & </s>
            <s xml:space="preserve">ſimilis ei,
              <lb/>
            quæ eſt oppoſitorum planorum, centrum graui
              <lb/>
            tatis in axe habens.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Sit priſma, in quo plana oppoſita ſint triangula a b c,
              <lb/>
            d e f; </s>
            <s xml:space="preserve">axis g h: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſecetur plano iam dictis planis æquidiſtã
              <lb/>
            te; </s>
            <s xml:space="preserve">quod faciat ſectionem
              <emph style="sc">K</emph>
            l m; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">axi in pũcto n occurrat.
              <lb/>
            </s>
            <s xml:space="preserve">Dico _k_ l m triangulum æquale eſſe, & </s>
            <s xml:space="preserve">ſimile triangulis a b c
              <lb/>
            d e f; </s>
            <s xml:space="preserve">atque eius grauitatis centrum eſſe punctum n. </s>
            <s xml:space="preserve">Quo-
              <lb/>
            niam enim plana a b c
              <lb/>
              <anchor type="figure" xlink:label="fig-0125-01a" xlink:href="fig-0125-01"/>
            K l m æquidiſtantia ſecã
              <lb/>
              <anchor type="note" xlink:label="note-0125-01a" xlink:href="note-0125-01"/>
            tur a plano a e; </s>
            <s xml:space="preserve">rectæ li-
              <lb/>
            neæ a b, K l, quæ ſunt ip
              <lb/>
            ſorum cõmunes ſectio-
              <lb/>
            nes inter ſe ſe æquidi-
              <lb/>
            ſtant. </s>
            <s xml:space="preserve">Sed æquidiſtant
              <lb/>
            a d, b e; </s>
            <s xml:space="preserve">cum a e ſit para
              <lb/>
            lelogrammum, ex priſ-
              <lb/>
            matis diffinitione. </s>
            <s xml:space="preserve">ergo
              <lb/>
            & </s>
            <s xml:space="preserve">al parallelogrammũ
              <lb/>
            erit; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">propterea linea
              <lb/>
              <anchor type="note" xlink:label="note-0125-02a" xlink:href="note-0125-02"/>
            _k_l, ipſi a b æqualis. </s>
            <s xml:space="preserve">Si-
              <lb/>
            militer demonſtrabitur
              <lb/>
            l m æquidiſtans, & </s>
            <s xml:space="preserve">æqua
              <lb/>
            lis b c; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">m
              <emph style="sc">K</emph>
            ipſi c a.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0125-01" xlink:href="fig-0125-01a">
              <image file="0125-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0125-01"/>
            </figure>
            <note position="right" xlink:label="note-0125-01" xlink:href="note-0125-01a" xml:space="preserve">16. unde-
              <lb/>
            cimi.</note>
            <note position="right" xlink:label="note-0125-02" xlink:href="note-0125-02a" xml:space="preserve">34. prim@</note>
          </div>
        </div>
      </text>
    </echo>