Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
191 40
192
193 41
194
195 42
196
197 43
198
199 44
200
201 45
202
203 46
204
205 47
206
207
208
209
210
211
212
< >
page |< < (26) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="85">
          <p>
            <s xml:space="preserve">
              <pb o="26" file="0163" n="163" rhead="DE CENTRO GRAVIT. SOLID."/>
            matis a e axis g h; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">priſmatis a f axis l h. </s>
            <s xml:space="preserve">Dico priſma
              <lb/>
            a e ad priſma a f eam proportionem habere, quam g h ad
              <lb/>
            h l. </s>
            <s xml:space="preserve">ducantur à punctis g l perpendiculares ad baſis pla-
              <lb/>
            num g K, l m: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iungantur k h,
              <lb/>
              <anchor type="figure" xlink:label="fig-0163-01a" xlink:href="fig-0163-01"/>
            h m. </s>
            <s xml:space="preserve">Itaque quoniam anguli g h
              <lb/>
            k, l h m ſunt æquales, ſimiliter ut
              <lb/>
            ſupra demonſtrabimus, triangu-
              <lb/>
            la g h K, l h m ſimilia eſſe; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ut g
              <lb/>
            K adlm, ita g h ad h l. </s>
            <s xml:space="preserve">habet au
              <lb/>
            tem priſma a e ad priſma a f ean
              <lb/>
            dem proportionem, quam altitu
              <lb/>
            do g k ad altitudinem l m, ſicuti
              <lb/>
            demonſtratum eſt. </s>
            <s xml:space="preserve">ergo & </s>
            <s xml:space="preserve">ean-
              <lb/>
            dem habebit, quam g h, ad h l. </s>
            <s xml:space="preserve">py
              <lb/>
            ramis igitur a b c d g ad pyrami-
              <lb/>
            dem a b c d l eandem proportio-
              <lb/>
            nem habebit, quam axis g h ad h l axem.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="3">
            <figure xlink:label="fig-0163-01" xlink:href="fig-0163-01a">
              <image file="0163-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0163-01"/>
            </figure>
          </div>
          <figure>
            <image file="0163-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0163-02"/>
          </figure>
          <p>
            <s xml:space="preserve">Denique ſint priſmata a e, k o in æqualibus baſibus a b
              <lb/>
            c d, k l m n conſtituta; </s>
            <s xml:space="preserve">quorum axes cum baſibus æquales
              <lb/>
            faciant angulos: </s>
            <s xml:space="preserve">ſitq; </s>
            <s xml:space="preserve">priſmatis a e axis f g, & </s>
            <s xml:space="preserve">altitudo f h:
              <lb/>
            </s>
            <s xml:space="preserve">priſmatis autem k o axis p q, & </s>
            <s xml:space="preserve">altitudo p r. </s>
            <s xml:space="preserve">Dico priſma
              <lb/>
            a e ad priſma k o ita eſſe, ut f g ad p q. </s>
            <s xml:space="preserve">iunctis enim g h,</s>
          </p>
        </div>
      </text>
    </echo>