Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
191
40
192
193
41
194
195
42
196
197
43
198
199
44
200
201
45
202
203
46
204
205
47
206
207
208
209
210
211
212
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(39)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div272
"
type
="
section
"
level
="
1
"
n
="
92
">
<
p
>
<
s
xml:id
="
echoid-s4727
"
xml:space
="
preserve
">
<
pb
o
="
39
"
file
="
0189
"
n
="
189
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
dem, cuius baſis eſt quadratum a b c d, & </
s
>
<
s
xml:id
="
echoid-s4728
"
xml:space
="
preserve
">altitudo e g: </
s
>
<
s
xml:id
="
echoid-s4729
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4730
"
xml:space
="
preserve
">
<
lb
/>
in pyramidem, cuius eadé baſis, altitudoq; </
s
>
<
s
xml:id
="
echoid-s4731
"
xml:space
="
preserve
">f g; </
s
>
<
s
xml:id
="
echoid-s4732
"
xml:space
="
preserve
">ut ſint e g,
<
lb
/>
g f ſemidiametri ſphæræ, & </
s
>
<
s
xml:id
="
echoid-s4733
"
xml:space
="
preserve
">linea una. </
s
>
<
s
xml:id
="
echoid-s4734
"
xml:space
="
preserve
">Cũigitur g ſit ſphæ-
<
lb
/>
ræ centrum, erit etiam centrum circuli, qui circa quadratũ
<
lb
/>
a b c d deſcribitur: </
s
>
<
s
xml:id
="
echoid-s4735
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4736
"
xml:space
="
preserve
">propterea eiuſdem quadrati grauita
<
lb
/>
tis centrum: </
s
>
<
s
xml:id
="
echoid-s4737
"
xml:space
="
preserve
">quod in prima propoſitione huius demon-
<
lb
/>
ſtratum eſt. </
s
>
<
s
xml:id
="
echoid-s4738
"
xml:space
="
preserve
">quare pyramidis a b c d e axis erit e g: </
s
>
<
s
xml:id
="
echoid-s4739
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4740
"
xml:space
="
preserve
">pyra
<
lb
/>
midis a b c d f axis f g. </
s
>
<
s
xml:id
="
echoid-s4741
"
xml:space
="
preserve
">Itaque ſit h centrum grauitatis py-
<
lb
/>
ramidis a b c d e, & </
s
>
<
s
xml:id
="
echoid-s4742
"
xml:space
="
preserve
">pyramidis a b c d f centrum ſit _K_: </
s
>
<
s
xml:id
="
echoid-s4743
"
xml:space
="
preserve
">per-
<
lb
/>
ſpicuum eſt ex uigeſima ſecunda propoſitione huius, lineã
<
lb
/>
e h triplam eſſe h g: </
s
>
<
s
xml:id
="
echoid-s4744
"
xml:space
="
preserve
">cõ
<
lb
/>
<
figure
xlink:label
="
fig-0189-01
"
xlink:href
="
fig-0189-01a
"
number
="
140
">
<
image
file
="
0189-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0189-01
"/>
</
figure
>
ponendoq; </
s
>
<
s
xml:id
="
echoid-s4745
"
xml:space
="
preserve
">e g ipſius g
<
lb
/>
h quadruplam. </
s
>
<
s
xml:id
="
echoid-s4746
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4747
"
xml:space
="
preserve
">eadẽ
<
lb
/>
ratione f g quadruplã
<
lb
/>
ipſius g k. </
s
>
<
s
xml:id
="
echoid-s4748
"
xml:space
="
preserve
">quod cum e
<
lb
/>
g, g f ſintæquales, & </
s
>
<
s
xml:id
="
echoid-s4749
"
xml:space
="
preserve
">h
<
lb
/>
g, g _k_ neceſſario æqua-
<
lb
/>
les erunt. </
s
>
<
s
xml:id
="
echoid-s4750
"
xml:space
="
preserve
">ergo ex quar
<
lb
/>
ta propoſitione primi
<
lb
/>
libri Archimedis de cẽ-
<
lb
/>
tro grauitatis planorũ,
<
lb
/>
totius octahedri, quod
<
lb
/>
ex dictis pyramidibus
<
lb
/>
conſtat, centrum graui
<
lb
/>
tatis erit punctum g idem, quodipſius ſphæræ centrum.</
s
>
<
s
xml:id
="
echoid-s4751
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4752
"
xml:space
="
preserve
">Sit icoſahedrum a d deſcriptum in ſphæra, cuius centrū
<
lb
/>
ſit g. </
s
>
<
s
xml:id
="
echoid-s4753
"
xml:space
="
preserve
">Dico g ipſius icoſahedri grauitatis eſſe centrum. </
s
>
<
s
xml:id
="
echoid-s4754
"
xml:space
="
preserve
">Si
<
lb
/>
enim ab angnlo a per g ducatur rectalinea uſque ad ſphæ
<
lb
/>
ræ ſuperficiem; </
s
>
<
s
xml:id
="
echoid-s4755
"
xml:space
="
preserve
">conſtat ex ſexta decima propoſitione libri
<
lb
/>
tertii decimi elementorum, cadere eam in angulum ipſi a
<
lb
/>
oppoſitum. </
s
>
<
s
xml:id
="
echoid-s4756
"
xml:space
="
preserve
">cadat in d: </
s
>
<
s
xml:id
="
echoid-s4757
"
xml:space
="
preserve
">ſitq; </
s
>
<
s
xml:id
="
echoid-s4758
"
xml:space
="
preserve
">una aliqua baſis icoſahedri tri-
<
lb
/>
angulum a b c: </
s
>
<
s
xml:id
="
echoid-s4759
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4760
"
xml:space
="
preserve
">iunctæ b g, c g producantur, & </
s
>
<
s
xml:id
="
echoid-s4761
"
xml:space
="
preserve
">cadant in
<
lb
/>
angulos e f, ipſis b c oppoſitos. </
s
>
<
s
xml:id
="
echoid-s4762
"
xml:space
="
preserve
">Itaque per triangula
<
lb
/>
a b c, d e f ducantur plana ſphæram ſecantia. </
s
>
<
s
xml:id
="
echoid-s4763
"
xml:space
="
preserve
">erunt hæ </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>