Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
191
40
192
193
41
194
195
42
196
197
43
198
199
44
200
201
45
202
203
46
204
205
47
206
207
208
209
210
211
212
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div284
"
type
="
section
"
level
="
1
"
n
="
95
">
<
pb
file
="
0202
"
n
="
202
"
rhead
="
FED. COMMANDINI
"/>
<
p
>
<
s
xml:id
="
echoid-s5060
"
xml:space
="
preserve
">ABSCINDATVR à portione conoidis rectanguli
<
lb
/>
a b c alia portio e b f, plano baſi æquidiſtante: </
s
>
<
s
xml:id
="
echoid-s5061
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s5062
"
xml:space
="
preserve
">eadem
<
lb
/>
portio ſecetur alio plano per axem; </
s
>
<
s
xml:id
="
echoid-s5063
"
xml:space
="
preserve
">ut ſuperficiei ſectio ſit
<
lb
/>
parabole a b c: </
s
>
<
s
xml:id
="
echoid-s5064
"
xml:space
="
preserve
">planorũ portiones abſcindentium rectæ
<
lb
/>
lineæ a c, e f: </
s
>
<
s
xml:id
="
echoid-s5065
"
xml:space
="
preserve
">axis autem portionis, & </
s
>
<
s
xml:id
="
echoid-s5066
"
xml:space
="
preserve
">ſectionis diameter
<
lb
/>
b d; </
s
>
<
s
xml:id
="
echoid-s5067
"
xml:space
="
preserve
">quam linea e fin puncto g ſecet. </
s
>
<
s
xml:id
="
echoid-s5068
"
xml:space
="
preserve
">Dico portionem co-
<
lb
/>
noidis a b c ad portionem e b f duplam proportionem ha-
<
lb
/>
bere eius, quæ eſt baſis a c ad baſim e f; </
s
>
<
s
xml:id
="
echoid-s5069
"
xml:space
="
preserve
">uel axis d b ad b g
<
lb
/>
axem. </
s
>
<
s
xml:id
="
echoid-s5070
"
xml:space
="
preserve
">Intelligantur enim duo coni, ſeu coni portiones
<
lb
/>
a b c, e b f, eãdem baſim, quam portiones conoidis, & </
s
>
<
s
xml:id
="
echoid-s5071
"
xml:space
="
preserve
">æqua
<
lb
/>
lem habentes altitudinem. </
s
>
<
s
xml:id
="
echoid-s5072
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s5073
"
xml:space
="
preserve
">quoniam a b c portio conoi
<
lb
/>
dis ſeſquialtera eſt coni, ſeu portionis coni a b c; </
s
>
<
s
xml:id
="
echoid-s5074
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s5075
"
xml:space
="
preserve
">portio
<
lb
/>
e b f coniſeu portionis coni e b feſt ſeſquialtera, quod de-
<
lb
/>
<
figure
xlink:label
="
fig-0202-01
"
xlink:href
="
fig-0202-01a
"
number
="
149
">
<
image
file
="
0202-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0202-01
"/>
</
figure
>
monſtrauit Archimedes in propoſitionibus 23, & </
s
>
<
s
xml:id
="
echoid-s5076
"
xml:space
="
preserve
">24 libri
<
lb
/>
de conoidibus, & </
s
>
<
s
xml:id
="
echoid-s5077
"
xml:space
="
preserve
">ſphæroidibus: </
s
>
<
s
xml:id
="
echoid-s5078
"
xml:space
="
preserve
">erit conoidis portio ad
<
lb
/>
conoidis portionem, ut conus ad conum, uel ut coni por-
<
lb
/>
tio ad coni portionem. </
s
>
<
s
xml:id
="
echoid-s5079
"
xml:space
="
preserve
">Sed conus, uel coni portio a b c ad
<
lb
/>
conum, uel coni portionem e b f compoſitam proportio-
<
lb
/>
nem habet ex proportione baſis a c ad baſim e f, & </
s
>
<
s
xml:id
="
echoid-s5080
"
xml:space
="
preserve
">ex pro-
<
lb
/>
portione altitudinis coni, uel coni portionis a b c ad alti-
<
lb
/>
tudinem ipſius e b f, ut nos demonſtrauimus in com men-
<
lb
/>
tariis in undecimam propoſitionem eiuſdem libri A rchi-
<
lb
/>
medis: </
s
>
<
s
xml:id
="
echoid-s5081
"
xml:space
="
preserve
">altitudo autem ad altitudinem eſt, ut axis ad axem.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s5082
"
xml:space
="
preserve
">quod quidem in conis rectis perſpicuum eſt, in ſcalenis </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>