Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
191
40
192
193
41
194
195
42
196
197
43
198
199
44
200
201
45
202
203
46
204
205
47
206
207
208
209
210
211
212
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(46)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div284
"
type
="
section
"
level
="
1
"
n
="
95
">
<
p
>
<
s
xml:id
="
echoid-s5082
"
xml:space
="
preserve
">
<
pb
o
="
46
"
file
="
0203
"
n
="
203
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
ro ita demonſtrabitur. </
s
>
<
s
xml:id
="
echoid-s5083
"
xml:space
="
preserve
">Ducatur à puncto b ad planum ba-
<
lb
/>
ſis a c perpendicularis linea b h, quæ ipſam e fin K ſecet.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s5084
"
xml:space
="
preserve
">erit b h altitudo coni, uel coni portionis a b c: </
s
>
<
s
xml:id
="
echoid-s5085
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s5086
"
xml:space
="
preserve
">b K altitu
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0203-01
"
xlink:href
="
note-0203-01a
"
xml:space
="
preserve
">16. unde-
<
lb
/>
cimi.</
note
>
do e f g. </
s
>
<
s
xml:id
="
echoid-s5087
"
xml:space
="
preserve
">Quod cum lineæ a c, e f inter ſe æ quidiſtent, ſunt
<
lb
/>
enim planorum æ quidiſtantium ſectiones: </
s
>
<
s
xml:id
="
echoid-s5088
"
xml:space
="
preserve
">habebit d b ad
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0203-02
"
xlink:href
="
note-0203-02a
"
xml:space
="
preserve
">4 ſexti.</
note
>
b g proportionem ean dem, quam h b ad b k. </
s
>
<
s
xml:id
="
echoid-s5089
"
xml:space
="
preserve
">quare por-
<
lb
/>
tio conoidis a b c ad portionem e f g proportionem habet
<
lb
/>
compoſitam ex proportione baſis a c ad baſim e f; </
s
>
<
s
xml:id
="
echoid-s5090
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s5091
"
xml:space
="
preserve
">ex
<
lb
/>
proportione d b axis ad axem b g. </
s
>
<
s
xml:id
="
echoid-s5092
"
xml:space
="
preserve
">Sed circulus, uel
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0203-03
"
xlink:href
="
note-0203-03a
"
xml:space
="
preserve
">2. duode
<
lb
/>
cimi</
note
>
ellipſis circa diametrum a c ad circulum, uel ellipſim
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0203-04
"
xlink:href
="
note-0203-04a
"
xml:space
="
preserve
">7. de co-
<
lb
/>
noidibus
<
lb
/>
& ſphæ-
<
lb
/>
roidibus</
note
>
circa e f, eſt ut quadratum a c ad quadratum e f; </
s
>
<
s
xml:id
="
echoid-s5093
"
xml:space
="
preserve
">hoc eſt ut
<
lb
/>
quadratũ a d ad quadratũ e g. </
s
>
<
s
xml:id
="
echoid-s5094
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s5095
"
xml:space
="
preserve
">quadratum a d ad quadra
<
lb
/>
tum e g eſt, ut linea d b ad lineam b g. </
s
>
<
s
xml:id
="
echoid-s5096
"
xml:space
="
preserve
">circulus igitur, uel el
<
lb
/>
lipſis circa diametrum a c ad circulũ, uel ellipſim circa e f,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0203-05
"
xlink:href
="
note-0203-05a
"
xml:space
="
preserve
">15. quinti</
note
>
hoc eſt baſis ad baſim eandem proportionem habet, quã
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0203-06
"
xlink:href
="
note-0203-06a
"
xml:space
="
preserve
">20. primi
<
lb
/>
conicorũ</
note
>
d b axis ad axem b g. </
s
>
<
s
xml:id
="
echoid-s5097
"
xml:space
="
preserve
">ex quibus ſequitur portionem a b c
<
lb
/>
ad portionem e b f habere proportionem duplam eius,
<
lb
/>
quæ eſt baſis a c ad bafim e f: </
s
>
<
s
xml:id
="
echoid-s5098
"
xml:space
="
preserve
">uel axis d b ad b g axem. </
s
>
<
s
xml:id
="
echoid-s5099
"
xml:space
="
preserve
">quod
<
lb
/>
demonſtrandum proponebatur.</
s
>
<
s
xml:id
="
echoid-s5100
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div286
"
type
="
section
"
level
="
1
"
n
="
96
">
<
head
xml:id
="
echoid-head103
"
xml:space
="
preserve
">THEOREMA XXV. PROPOSITIO XXXI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s5101
"
xml:space
="
preserve
">Cuiuslibet fruſti à portione rectanguli conoi
<
lb
/>
dis abſcisſi, centrum grauitatis eſt in axe, ita ut
<
lb
/>
demptis primum à quadrato, quod fit ex diame-
<
lb
/>
tro maioris baſis, tertia ipſius parte, & </
s
>
<
s
xml:id
="
echoid-s5102
"
xml:space
="
preserve
">duabus
<
lb
/>
tertiis quadrati, quod fit ex diametro baſis mino-
<
lb
/>
ris: </
s
>
<
s
xml:id
="
echoid-s5103
"
xml:space
="
preserve
">deinde à tertia parte quadrati maioris baſis
<
lb
/>
rurſus dempta portione, ad quam reliquum qua
<
lb
/>
drati baſis maioris unà cum dicta portione duplã
<
lb
/>
proportionem habeat eius, quæ eſt quadrati </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>