Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
191 40
192
193 41
194
195 42
196
197 43
198
199 44
200
201 45
202
203 46
204
205 47
206
207
208
209
210
211
212
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div286" type="section" level="1" n="96">
          <p>
            <s xml:id="echoid-s5103" xml:space="preserve">
              <pb file="0204" n="204" rhead="FED. COMMANDINI"/>
            ioris baſis ad quadratum minoris: </s>
            <s xml:id="echoid-s5104" xml:space="preserve">centrum ſit in
              <lb/>
            eo axis puncto, quo ita diuiditur ut pars, quæ mi
              <lb/>
            norem baſim attingit ad alteram partem eandem
              <lb/>
            proportionem habeat, quam dempto quadrato
              <lb/>
            minoris baſis à duabus tertiis quadrati maioris,
              <lb/>
            habet id, quod reliquum eſt unà cum portione à
              <lb/>
            tertia quadrati maioris parte dempta, ad reliquà
              <lb/>
            eiuſdem tertiæ portionem.</s>
            <s xml:id="echoid-s5105" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s5106" xml:space="preserve">SIT fruſtum à portione rectanguli conoidis abſciſſum
              <lb/>
            a b c d, cuius maior baſis circulus, uel ellipſis circa diame-
              <lb/>
            trum b c, minor circa diametrum a d; </s>
            <s xml:id="echoid-s5107" xml:space="preserve">& </s>
            <s xml:id="echoid-s5108" xml:space="preserve">axis e f. </s>
            <s xml:id="echoid-s5109" xml:space="preserve">deſcriba-
              <lb/>
            tur autem portio conoidis, à quo illud abſciſſum eſt, & </s>
            <s xml:id="echoid-s5110" xml:space="preserve">pla-
              <lb/>
              <figure xlink:label="fig-0204-01" xlink:href="fig-0204-01a" number="150">
                <image file="0204-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0204-01"/>
              </figure>
            no per axem ducto ſecetur; </s>
            <s xml:id="echoid-s5111" xml:space="preserve">ut ſuperficiei ſectio ſit parabo-
              <lb/>
            le b g c, cuius diameter, & </s>
            <s xml:id="echoid-s5112" xml:space="preserve">axis portionis g f: </s>
            <s xml:id="echoid-s5113" xml:space="preserve">deinde g f diui
              <lb/>
            datur in puncto h, ita ut g h ſit dupla h f: </s>
            <s xml:id="echoid-s5114" xml:space="preserve">& </s>
            <s xml:id="echoid-s5115" xml:space="preserve">rurſus g e in ean
              <lb/>
            dem proportionem diuidatur: </s>
            <s xml:id="echoid-s5116" xml:space="preserve">ſitq; </s>
            <s xml:id="echoid-s5117" xml:space="preserve">g _k_ ipſius k e dupla. </s>
            <s xml:id="echoid-s5118" xml:space="preserve">Iã
              <lb/>
            ex iis, quæ proxime demonſtrauimus, conſtat centrum gra
              <lb/>
            uitatis portionis b g c eſſe h punctum: </s>
            <s xml:id="echoid-s5119" xml:space="preserve">& </s>
            <s xml:id="echoid-s5120" xml:space="preserve">portionis a g c
              <lb/>
            punctum k. </s>
            <s xml:id="echoid-s5121" xml:space="preserve">ſumpto igitur infra h punctol, ita ut k h ad h </s>
          </p>
        </div>
      </text>
    </echo>