Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
31
10
32
33
11
34
35
12
36
37
13
38
39
14
40
41
15
42
43
16
44
45
17
46
47
18
48
49
19
50
51
20
52
53
21
54
55
22
56
57
23
58
59
24
60
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div231
"
type
="
section
"
level
="
1
"
n
="
79
">
<
p
>
<
s
xml:id
="
echoid-s3817
"
xml:space
="
preserve
">
<
pb
file
="
0152
"
n
="
152
"
rhead
="
FED. COMMANDINI
"/>
da figura, & </
s
>
<
s
xml:id
="
echoid-s3818
"
xml:space
="
preserve
">altera circumſcribatur ex cylindris, uel cylin-
<
lb
/>
dri portionibus, ſicuti dictum eſt, ita ut exceſſus, quo figu-
<
lb
/>
ra circumſcripta inſcriptam ſuperat, ſit ſolido g minor.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3819
"
xml:space
="
preserve
">Itaque centrum grauitatis cylindri, uel cylindri portionis
<
lb
/>
q r eſt in linea p o; </
s
>
<
s
xml:id
="
echoid-s3820
"
xml:space
="
preserve
">cylindri, uel cylindri portionis st cen-
<
lb
/>
trum in linea on; </
s
>
<
s
xml:id
="
echoid-s3821
"
xml:space
="
preserve
">centrum u x in linea n m; </
s
>
<
s
xml:id
="
echoid-s3822
"
xml:space
="
preserve
">y z in m b; </
s
>
<
s
xml:id
="
echoid-s3823
"
xml:space
="
preserve
">η @
<
lb
/>
in 1k; </
s
>
<
s
xml:id
="
echoid-s3824
"
xml:space
="
preserve
">λ μ in K h; </
s
>
<
s
xml:id
="
echoid-s3825
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3826
"
xml:space
="
preserve
">denique ν π centrum in h d. </
s
>
<
s
xml:id
="
echoid-s3827
"
xml:space
="
preserve
">ergo figu-
<
lb
/>
<
figure
xlink:label
="
fig-0152-01
"
xlink:href
="
fig-0152-01a
"
number
="
105
">
<
image
file
="
0152-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0152-01
"/>
</
figure
>
ræ inſcriptæ centrum eſt in linea p d. </
s
>
<
s
xml:id
="
echoid-s3828
"
xml:space
="
preserve
">Sitautem ρ: </
s
>
<
s
xml:id
="
echoid-s3829
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3830
"
xml:space
="
preserve
">iun-
<
lb
/>
cta ρ e protendatur, ut cum linea, quæ à pũctoc ducta fue-
<
lb
/>
rit axi æquidiſtans, conueniat in σ. </
s
>
<
s
xml:id
="
echoid-s3831
"
xml:space
="
preserve
">erit σ ζ ad ρ e, ut c d
<
lb
/>
ad d f: </
s
>
<
s
xml:id
="
echoid-s3832
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3833
"
xml:space
="
preserve
">conus, ſeu coni portio ad exceſſum, quo circum-
<
lb
/>
ſcripta figura inſcriptam ſuperat, habebit maiorem pro-
<
lb
/>
portionem, quàm σ ζ ad ρ e. </
s
>
<
s
xml:id
="
echoid-s3834
"
xml:space
="
preserve
">ergo ad partem exceſſus, quæ
<
lb
/>
intra ipſius ſuperficiem comprehenditur, multo maiorem
<
lb
/>
proportionem habebit. </
s
>
<
s
xml:id
="
echoid-s3835
"
xml:space
="
preserve
">habeat eam, quam τ ρ ad ρ e. </
s
>
<
s
xml:id
="
echoid-s3836
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>