Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
31 10
32
33 11
34
35 12
36
37 13
38
39 14
40
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
< >
page |< < (36) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div268" type="section" level="1" n="91">
          <p>
            <s xml:id="echoid-s4563" xml:space="preserve">
              <pb o="36" file="0183" n="183" rhead="DE CENTRO GRAVIT. SOLID."/>
            grauitatis magnitudinis, quæ ex utriſque pyramidibus cõ
              <lb/>
            ſtat; </s>
            <s xml:id="echoid-s4564" xml:space="preserve">hoc eſt ipſius fruſti. </s>
            <s xml:id="echoid-s4565" xml:space="preserve">Sed fruſti centrum eſt etiam in a-
              <lb/>
            xe g h. </s>
            <s xml:id="echoid-s4566" xml:space="preserve">ergo in puncto φ, in quo lineæ z u, g h conueniunt.
              <lb/>
            </s>
            <s xml:id="echoid-s4567" xml:space="preserve">Itaque u φ ad φ z eam proportionem habet, quam pyramis
              <lb/>
              <note position="right" xlink:label="note-0183-01" xlink:href="note-0183-01a" xml:space="preserve">8. prim I
                <lb/>
              libri Ar-
                <lb/>
              chimedis
                <lb/>
              de cẽtro
                <lb/>
              grauita-
                <lb/>
              tis plano
                <lb/>
              runi</note>
            b c f e d ad pyramidem a b c d. </s>
            <s xml:id="echoid-s4568" xml:space="preserve">& </s>
            <s xml:id="echoid-s4569" xml:space="preserve">componendo u z ad z φ
              <lb/>
            eam habet, quam fruſtum ad pyramidem a b c d. </s>
            <s xml:id="echoid-s4570" xml:space="preserve">Vtuero
              <lb/>
            u z ad z φ, ita o p ad p φ ob ſimilitudinem triangulorum,
              <lb/>
            u o φ, z p φ. </s>
            <s xml:id="echoid-s4571" xml:space="preserve">quare o p ad p φ eſt ut fruſtum ad pyramidem
              <lb/>
            a b c d. </s>
            <s xml:id="echoid-s4572" xml:space="preserve">ſed ita erat o p ad p q. </s>
            <s xml:id="echoid-s4573" xml:space="preserve">æquales igitur ſunt p φ, p q: </s>
            <s xml:id="echoid-s4574" xml:space="preserve">& </s>
            <s xml:id="echoid-s4575" xml:space="preserve">
              <lb/>
              <note position="right" xlink:label="note-0183-02" xlink:href="note-0183-02a" xml:space="preserve">7. quinti.</note>
            q φ unum atque idem punctum. </s>
            <s xml:id="echoid-s4576" xml:space="preserve">ex quibus ſequitur lineam
              <lb/>
            z u ſecare o p in q: </s>
            <s xml:id="echoid-s4577" xml:space="preserve">& </s>
            <s xml:id="echoid-s4578" xml:space="preserve">propterea pũctum q ipſius fruſti gra-
              <lb/>
            uitatis centrum eſſe.</s>
            <s xml:id="echoid-s4579" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4580" xml:space="preserve">Sit fruſtum a g à pyramide, quæ quadrangularem baſim
              <lb/>
            habeat abſciſſum, cuius maior baſis a b c d, minor e f g h,
              <lb/>
            & </s>
            <s xml:id="echoid-s4581" xml:space="preserve">axis k l. </s>
            <s xml:id="echoid-s4582" xml:space="preserve">diuidatur autem primũ _k_ l, ita ut quam propor-
              <lb/>
            tionem habet duplum lateris a b unà cum latere e f ad du
              <lb/>
            plum lateris e f unà cum a b; </s>
            <s xml:id="echoid-s4583" xml:space="preserve">habeat k m ad m l. </s>
            <s xml:id="echoid-s4584" xml:space="preserve">deinde à
              <lb/>
            púcto m ad k ſumatur quarta pars ipſius m k, quæ ſit m n.
              <lb/>
            </s>
            <s xml:id="echoid-s4585" xml:space="preserve">& </s>
            <s xml:id="echoid-s4586" xml:space="preserve">rurſus ab l ſumatur quarta pars totius axis l k, quæ ſit
              <lb/>
            l o. </s>
            <s xml:id="echoid-s4587" xml:space="preserve">poſtremo fiat o n ad n p, ut fruſtum a g ad pyramidẽ,
              <lb/>
            cuius baſis ſit eadem, quæ fruſti, & </s>
            <s xml:id="echoid-s4588" xml:space="preserve">altitudo æqualis. </s>
            <s xml:id="echoid-s4589" xml:space="preserve">Dico
              <lb/>
            punctum p fruſti a g grauitatis centrum eſſe. </s>
            <s xml:id="echoid-s4590" xml:space="preserve">ducantur
              <lb/>
            enim a c, e g: </s>
            <s xml:id="echoid-s4591" xml:space="preserve">& </s>
            <s xml:id="echoid-s4592" xml:space="preserve">intelligantur duo fruſta triangulares ba-
              <lb/>
            ſes habentia, quorum alterum l f ex baſibus a b c, e f g cõ-
              <lb/>
            ſtet; </s>
            <s xml:id="echoid-s4593" xml:space="preserve">alterum l h ex baſibus a c d, e g h. </s>
            <s xml:id="echoid-s4594" xml:space="preserve">Sitq; </s>
            <s xml:id="echoid-s4595" xml:space="preserve">fruſti l f axis
              <lb/>
            q r; </s>
            <s xml:id="echoid-s4596" xml:space="preserve">in quo grauitatis centrum s: </s>
            <s xml:id="echoid-s4597" xml:space="preserve">fruſti uero l h axis t u, & </s>
            <s xml:id="echoid-s4598" xml:space="preserve">
              <lb/>
            x grauitatis centrum: </s>
            <s xml:id="echoid-s4599" xml:space="preserve">deinde iungantur u r, t q, x s. </s>
            <s xml:id="echoid-s4600" xml:space="preserve">tranſi-
              <lb/>
            bit u r per l: </s>
            <s xml:id="echoid-s4601" xml:space="preserve">quoniam l eſt centrum grauitatis quadran-
              <lb/>
            guli a b c d: </s>
            <s xml:id="echoid-s4602" xml:space="preserve">& </s>
            <s xml:id="echoid-s4603" xml:space="preserve">puncta r u grauitatis centra triangulorum
              <lb/>
            a b c, a c d; </s>
            <s xml:id="echoid-s4604" xml:space="preserve">in quæ quadrangulum ipſum diuiditur. </s>
            <s xml:id="echoid-s4605" xml:space="preserve">eadem
              <lb/>
            quoque ratione t q per punctum _k_ tranſibit. </s>
            <s xml:id="echoid-s4606" xml:space="preserve">At uero pro
              <lb/>
            portiones, ex quibus fruſtorum grauitatis centra inquiri-
              <lb/>
            mus, eædem ſunt in toto ſruſto a g, & </s>
            <s xml:id="echoid-s4607" xml:space="preserve">in fruſtis l f, l h. </s>
            <s xml:id="echoid-s4608" xml:space="preserve">Sunt
              <lb/>
            enim per octauam huius quadrilatera a b c d, e f g h ſimilia:</s>
            <s xml:id="echoid-s4609" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>