Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
31 10
32
33 11
34
35 12
36
37 13
38
39 14
40
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div284" type="section" level="1" n="95">
          <pb file="0202" n="202" rhead="FED. COMMANDINI"/>
          <p>
            <s xml:id="echoid-s5060" xml:space="preserve">ABSCINDATVR à portione conoidis rectanguli
              <lb/>
            a b c alia portio e b f, plano baſi æquidiſtante: </s>
            <s xml:id="echoid-s5061" xml:space="preserve">& </s>
            <s xml:id="echoid-s5062" xml:space="preserve">eadem
              <lb/>
            portio ſecetur alio plano per axem; </s>
            <s xml:id="echoid-s5063" xml:space="preserve">ut ſuperficiei ſectio ſit
              <lb/>
            parabole a b c: </s>
            <s xml:id="echoid-s5064" xml:space="preserve">planorũ portiones abſcindentium rectæ
              <lb/>
            lineæ a c, e f: </s>
            <s xml:id="echoid-s5065" xml:space="preserve">axis autem portionis, & </s>
            <s xml:id="echoid-s5066" xml:space="preserve">ſectionis diameter
              <lb/>
            b d; </s>
            <s xml:id="echoid-s5067" xml:space="preserve">quam linea e fin puncto g ſecet. </s>
            <s xml:id="echoid-s5068" xml:space="preserve">Dico portionem co-
              <lb/>
            noidis a b c ad portionem e b f duplam proportionem ha-
              <lb/>
            bere eius, quæ eſt baſis a c ad baſim e f; </s>
            <s xml:id="echoid-s5069" xml:space="preserve">uel axis d b ad b g
              <lb/>
            axem. </s>
            <s xml:id="echoid-s5070" xml:space="preserve">Intelligantur enim duo coni, ſeu coni portiones
              <lb/>
            a b c, e b f, eãdem baſim, quam portiones conoidis, & </s>
            <s xml:id="echoid-s5071" xml:space="preserve">æqua
              <lb/>
            lem habentes altitudinem. </s>
            <s xml:id="echoid-s5072" xml:space="preserve">& </s>
            <s xml:id="echoid-s5073" xml:space="preserve">quoniam a b c portio conoi
              <lb/>
            dis ſeſquialtera eſt coni, ſeu portionis coni a b c; </s>
            <s xml:id="echoid-s5074" xml:space="preserve">& </s>
            <s xml:id="echoid-s5075" xml:space="preserve">portio
              <lb/>
            e b f coniſeu portionis coni e b feſt ſeſquialtera, quod de-
              <lb/>
              <figure xlink:label="fig-0202-01" xlink:href="fig-0202-01a" number="149">
                <image file="0202-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0202-01"/>
              </figure>
            monſtrauit Archimedes in propoſitionibus 23, & </s>
            <s xml:id="echoid-s5076" xml:space="preserve">24 libri
              <lb/>
            de conoidibus, & </s>
            <s xml:id="echoid-s5077" xml:space="preserve">ſphæroidibus: </s>
            <s xml:id="echoid-s5078" xml:space="preserve">erit conoidis portio ad
              <lb/>
            conoidis portionem, ut conus ad conum, uel ut coni por-
              <lb/>
            tio ad coni portionem. </s>
            <s xml:id="echoid-s5079" xml:space="preserve">Sed conus, uel coni portio a b c ad
              <lb/>
            conum, uel coni portionem e b f compoſitam proportio-
              <lb/>
            nem habet ex proportione baſis a c ad baſim e f, & </s>
            <s xml:id="echoid-s5080" xml:space="preserve">ex pro-
              <lb/>
            portione altitudinis coni, uel coni portionis a b c ad alti-
              <lb/>
            tudinem ipſius e b f, ut nos demonſtrauimus in com men-
              <lb/>
            tariis in undecimam propoſitionem eiuſdem libri A rchi-
              <lb/>
            medis: </s>
            <s xml:id="echoid-s5081" xml:space="preserve">altitudo autem ad altitudinem eſt, ut axis ad axem.
              <lb/>
            </s>
            <s xml:id="echoid-s5082" xml:space="preserve">quod quidem in conis rectis perſpicuum eſt, in ſcalenis </s>
          </p>
        </div>
      </text>
    </echo>