Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
< >
page |< < (7) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div206" type="section" level="1" n="68">
          <p>
            <s xml:id="echoid-s3169" xml:space="preserve">
              <pb o="7" file="0125" n="125" rhead="DE CENTRO GRAVIT. SOLID."/>
            metrum habens e d. </s>
            <s xml:id="echoid-s3170" xml:space="preserve">Quoniam igitur circuli uel ellipſis
              <lb/>
            a e c b grauitatis centrum eſt in diametro b e, & </s>
            <s xml:id="echoid-s3171" xml:space="preserve">portio-
              <lb/>
            nis a e c centrum in linea e d: </s>
            <s xml:id="echoid-s3172" xml:space="preserve">reliquæ portionis, uidelicet
              <lb/>
            a b c centrum grauitatis in ipſa b d conſiſtat neceſſe eſt, ex
              <lb/>
            octaua propoſitione eiuſdem.</s>
            <s xml:id="echoid-s3173" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div208" type="section" level="1" n="69">
          <head xml:id="echoid-head76" xml:space="preserve">THEOREMA V. PROPOSITIO V.</head>
          <p>
            <s xml:id="echoid-s3174" xml:space="preserve">SI priſma ſecetur plano oppoſitis planis æqui
              <lb/>
            diſtante, ſectio erit figura æqualis & </s>
            <s xml:id="echoid-s3175" xml:space="preserve">ſimilis ei,
              <lb/>
            quæ eſt oppoſitorum planorum, centrum graui
              <lb/>
            tatis in axe habens.</s>
            <s xml:id="echoid-s3176" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3177" xml:space="preserve">Sit priſma, in quo plana oppoſita ſint triangula a b c,
              <lb/>
            d e f; </s>
            <s xml:id="echoid-s3178" xml:space="preserve">axis g h: </s>
            <s xml:id="echoid-s3179" xml:space="preserve">& </s>
            <s xml:id="echoid-s3180" xml:space="preserve">ſecetur plano iam dictis planis æquidiſtã
              <lb/>
            te; </s>
            <s xml:id="echoid-s3181" xml:space="preserve">quod faciat ſectionem
              <emph style="sc">K</emph>
            l m; </s>
            <s xml:id="echoid-s3182" xml:space="preserve">& </s>
            <s xml:id="echoid-s3183" xml:space="preserve">axi in pũcto n occurrat.
              <lb/>
            </s>
            <s xml:id="echoid-s3184" xml:space="preserve">Dico _k_ l m triangulum æquale eſſe, & </s>
            <s xml:id="echoid-s3185" xml:space="preserve">ſimile triangulis a b c
              <lb/>
            d e f; </s>
            <s xml:id="echoid-s3186" xml:space="preserve">atque eius grauitatis centrum eſſe punctum n. </s>
            <s xml:id="echoid-s3187" xml:space="preserve">Quo-
              <lb/>
            niam enim plana a b c
              <lb/>
              <figure xlink:label="fig-0125-01" xlink:href="fig-0125-01a" number="82">
                <image file="0125-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0125-01"/>
              </figure>
            K l m æquidiſtantia ſecã
              <lb/>
              <note position="right" xlink:label="note-0125-01" xlink:href="note-0125-01a" xml:space="preserve">16. unde-
                <lb/>
              cimi.</note>
            tur a plano a e; </s>
            <s xml:id="echoid-s3188" xml:space="preserve">rectæ li-
              <lb/>
            neæ a b, K l, quæ ſunt ip
              <lb/>
            ſorum cõmunes ſectio-
              <lb/>
            nes inter ſe ſe æquidi-
              <lb/>
            ſtant. </s>
            <s xml:id="echoid-s3189" xml:space="preserve">Sed æquidiſtant
              <lb/>
            a d, b e; </s>
            <s xml:id="echoid-s3190" xml:space="preserve">cum a e ſit para
              <lb/>
            lelogrammum, ex priſ-
              <lb/>
            matis diffinitione. </s>
            <s xml:id="echoid-s3191" xml:space="preserve">ergo
              <lb/>
            & </s>
            <s xml:id="echoid-s3192" xml:space="preserve">al parallelogrammũ
              <lb/>
            erit; </s>
            <s xml:id="echoid-s3193" xml:space="preserve">& </s>
            <s xml:id="echoid-s3194" xml:space="preserve">propterea linea
              <lb/>
              <note position="right" xlink:label="note-0125-02" xlink:href="note-0125-02a" xml:space="preserve">34. prim@</note>
            _k_l, ipſi a b æqualis. </s>
            <s xml:id="echoid-s3195" xml:space="preserve">Si-
              <lb/>
            militer demonſtrabitur
              <lb/>
            l m æquidiſtans, & </s>
            <s xml:id="echoid-s3196" xml:space="preserve">æqua
              <lb/>
            lis b c; </s>
            <s xml:id="echoid-s3197" xml:space="preserve">& </s>
            <s xml:id="echoid-s3198" xml:space="preserve">m
              <emph style="sc">K</emph>
            ipſi c a.</s>
            <s xml:id="echoid-s3199" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>