Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="91">
          <p>
            <s xml:space="preserve">
              <pb file="0182" n="182" rhead="FED. COMMANDINI"/>
            nis, quouſque in unum punctum r conueniant; </s>
            <s xml:space="preserve">erit pyra-
              <lb/>
            midis a b c r, & </s>
            <s xml:space="preserve">pyramidis d e f r grauitatis centrum in li-
              <lb/>
            nea r h. </s>
            <s xml:space="preserve">ergo & </s>
            <s xml:space="preserve">reliquæ magnitudinis, uidelicet fruſti cen-
              <lb/>
            trum in eadem linea neceſſario comperietur. </s>
            <s xml:space="preserve">Iungantur
              <lb/>
            d b, d c, d h, d m: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per lineas d b, d c ducto altero plano
              <lb/>
            intelligatur fruſtum in duas pyramides diuiſum: </s>
            <s xml:space="preserve">in pyra-
              <lb/>
            midem quidem, cuius baſis eſt triangulum a b c, uertex d:
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">in eam, cuius idem uertex, & </s>
            <s xml:space="preserve">baſis trapezium b c f e. </s>
            <s xml:space="preserve">erit
              <lb/>
            igitur pyramidis a b c d axis d h, & </s>
            <s xml:space="preserve">pyramidis b c f e d axis
              <lb/>
            d m: </s>
            <s xml:space="preserve">atque erunt tres axes g h, d h, d m in eodem plano
              <lb/>
            d a K l. </s>
            <s xml:space="preserve">ducatur præterea per o linea ſt ip ſi a K æquidiſtãs,
              <lb/>
            quæ lineam d h in u ſecet: </s>
            <s xml:space="preserve">per p uero ducatur x y æquidi-
              <lb/>
            ſtans eidem, ſecansque d m in
              <lb/>
              <anchor type="figure" xlink:label="fig-0182-01a" xlink:href="fig-0182-01"/>
            z: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iungatur z u, quæ ſecet
              <lb/>
            g h in φ. </s>
            <s xml:space="preserve">tranſibit ea per q: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            erunt φ q unum, atque idem
              <lb/>
            pun ctum; </s>
            <s xml:space="preserve">ut inferius appare-
              <lb/>
            bit. </s>
            <s xml:space="preserve">Quoniam igitur linea u o
              <lb/>
            æ quidiſtat ipſi d g, erit d u ad
              <lb/>
              <anchor type="note" xlink:label="note-0182-01a" xlink:href="note-0182-01"/>
            u h, ut g o ad o h. </s>
            <s xml:space="preserve">Sed g o tri-
              <lb/>
            pla eſt o h. </s>
            <s xml:space="preserve">quare & </s>
            <s xml:space="preserve">d u ipſius
              <lb/>
            u h eſt tripla: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ideo pyrami-
              <lb/>
            dis a b c d centrum grauitatis
              <lb/>
            erit punctum 11. </s>
            <s xml:space="preserve">Rurſus quo-
              <lb/>
            niam z y ipſi d l æquidiſtat, d z
              <lb/>
            a d z m eſt, utly ad y m: </s>
            <s xml:space="preserve">eſtque
              <lb/>
            ly ad y m, ut g p ad p n. </s>
            <s xml:space="preserve">ergo
              <lb/>
            d z ad z m eſt, ut g p ad p n.
              <lb/>
            </s>
            <s xml:space="preserve">Quòd cum g p ſit tripla p n; </s>
            <s xml:space="preserve">
              <lb/>
            erit etiam d z ipſius z m tri-
              <lb/>
            pla. </s>
            <s xml:space="preserve">atque ob eandem cauſ-
              <lb/>
            ſam punctum z eſt centrũ gra-
              <lb/>
            uitatis pyramidis b c f e d. </s>
            <s xml:space="preserve">iun
              <lb/>
            ctaigitur z u, in ea erit cẽtrum</s>
          </p>
        </div>
      </text>
    </echo>