Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
41
15
42
43
16
44
45
17
46
47
18
48
49
19
50
51
20
52
53
21
54
55
22
56
57
23
58
59
24
60
61
25
62
63
26
64
65
27
66
67
22
68
69
29
70
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
ARCHIMEDIS
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
52
">
<
p
>
<
s
xml:space
="
preserve
">
<
pb
file
="
0086
"
n
="
86
"
rhead
="
ARCHIMEDIS
"/>
ipſi my æquidiſtans. </
s
>
<
s
xml:space
="
preserve
">Demonſtrandum eſt portionem in
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0086-01a
"
xlink:href
="
note-0086-01
"/>
humidum demiſſam, inclinatamq; </
s
>
<
s
xml:space
="
preserve
">adeo, ut baſis ipſius nõ
<
lb
/>
contingat humidum, inclinatam conſiſtere ita, ut baſis ſu-
<
lb
/>
perficiem humidi nullo modo contingat: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">axis cum ea fa
<
lb
/>
ciat angulum angulo χ maiorem. </
s
>
<
s
xml:space
="
preserve
">Demittatur enim in hu-
<
lb
/>
midum, conſiſtatq; </
s
>
<
s
xml:space
="
preserve
">ita, ut baſis ipſius in uno puncto cõtin
<
lb
/>
gat humidi ſuperficiem: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">ſecta ipſa portione per axem,
<
lb
/>
plano ad humidi ſuperficiem recto; </
s
>
<
s
xml:space
="
preserve
">ſuperficiei quidẽ por-
<
lb
/>
tionis ſectio ſit a p o l rectanguli coni ſectio: </
s
>
<
s
xml:space
="
preserve
">ſuperficiei
<
lb
/>
humidi ſectio ſit a o: </
s
>
<
s
xml:space
="
preserve
">axis autem portionis, & </
s
>
<
s
xml:space
="
preserve
">ſectionis dia
<
lb
/>
meter b d: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">ſecetur b d in punctis k r, ut dictum eſt: </
s
>
<
s
xml:space
="
preserve
">du-
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0086-02a
"
xlink:href
="
note-0086-02
"/>
catur etiam p g æquidiſtans ipſi a o, quæ ſectionem a p o l
<
lb
/>
contingat in p: </
s
>
<
s
xml:space
="
preserve
">atque ab eo puncto ducatur p t æquidiſtãs
<
lb
/>
ipſi b d; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">p s ad b d perpendicularis. </
s
>
<
s
xml:space
="
preserve
">Itaque quoniam
<
lb
/>
portio ad humidum in grauitate eam proportionem ha-
<
lb
/>
bet, quam qua-
<
lb
/>
<
anchor
type
="
figure
"
xlink:label
="
fig-0086-01a
"
xlink:href
="
fig-0086-01
"/>
dratũ, quod fit
<
lb
/>
à linea χ ad qua
<
lb
/>
dratum b d: </
s
>
<
s
xml:space
="
preserve
">quã
<
lb
/>
uero proportio
<
lb
/>
nem habet por-
<
lb
/>
tio ad humidũ,
<
lb
/>
eandem pars ip
<
lb
/>
ſius demerſa ha
<
lb
/>
bet ad totã por
<
lb
/>
tionẽ: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">quam
<
lb
/>
pars demerſa ad
<
lb
/>
totam, eandem
<
lb
/>
habet quadra-
<
lb
/>
tum t p ad b d
<
lb
/>
quadratum: </
s
>
<
s
xml:space
="
preserve
">erit
<
lb
/>
linea ψ æqualis
<
lb
/>
ipſi t p. </
s
>
<
s
xml:space
="
preserve
">quare & </
s
>
<
s
xml:space
="
preserve
">lineæ m n, p t; </
s
>
<
s
xml:space
="
preserve
">itemq, portiones a m q,
<
lb
/>
a p o inter ſe ſunt æquales. </
s
>
<
s
xml:space
="
preserve
">Quòd cumin portionibus
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0086-03a
"
xlink:href
="
note-0086-03
"/>
</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>