Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
51
20
52
53
21
54
55
22
56
57
23
58
59
24
60
61
25
62
63
26
64
65
27
66
67
22
68
69
29
70
71
30
72
73
37
74
75
32
76
77
25
78
79
34
80
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(6)
of 213
>
>|
DE IIS QVAE VEH. IN AQVA.
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
15
">
<
pb
o
="
6
"
file
="
0023
"
n
="
23
"
rhead
="
DE IIS QVAE VEH. IN AQVA.
"/>
</
div
>
<
div
type
="
section
"
level
="
1
"
n
="
16
">
<
head
xml:space
="
preserve
">COMMENTARIVS.</
head
>
<
p
style
="
it
">
<
s
xml:space
="
preserve
">AT ucro ea, quæ feruntur deorſum, ſecundum perpendicula-
<
lb
/>
rem, quæ per centrum grauit atis ipſorum ducitur, ſimiliter ferri,
<
lb
/>
uel tanquam notum, uel ut ab alijs poſitum prætermiſit.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
type
="
section
"
level
="
1
"
n
="
17
">
<
head
xml:space
="
preserve
">PROPOSITIO VIII.</
head
>
<
p
>
<
s
xml:space
="
preserve
">SI aliqua magnitudo ſolida leuior humido,
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0023-01a
"
xlink:href
="
note-0023-01
"/>
quæ figuram portionis ſphæræ habeat, in humi-
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0023-02a
"
xlink:href
="
note-0023-02
"/>
dum demittatur, ita vt baſis portionis non tan-
<
lb
/>
gat humidum: </
s
>
<
s
xml:space
="
preserve
">figura inſidebit recta, ita vt axis
<
lb
/>
portionis ſit ſecundum perpendicularem. </
s
>
<
s
xml:space
="
preserve
">Et ſi
<
lb
/>
ab aliquo inclinetur figura, vt baſis portionis hu-
<
lb
/>
midum cõtingat; </
s
>
<
s
xml:space
="
preserve
">non manebit inclinata ſi demit
<
lb
/>
tatur, ſed recta reſtituetur.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
1
">
<
note
position
="
right
"
xlink:label
="
note-0023-01
"
xlink:href
="
note-0023-01a
"
xml:space
="
preserve
">A</
note
>
<
note
position
="
right
"
xlink:label
="
note-0023-02
"
xlink:href
="
note-0023-02a
"
xml:space
="
preserve
">B</
note
>
</
div
>
<
p
>
<
s
xml:space
="
preserve
">[INTELLIGATVR quædam magnitudo, qualis
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0023-03a
"
xlink:href
="
note-0023-03
"/>
dicta eſt, in humidum demiſſa: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">ducatur planum per axẽ
<
lb
/>
portionis, & </
s
>
<
s
xml:space
="
preserve
">per terræ
<
lb
/>
<
anchor
type
="
figure
"
xlink:label
="
fig-0023-01a
"
xlink:href
="
fig-0023-01
"/>
centrum, ut ſit ſuperfi-
<
lb
/>
ciei humidi ſectio circũ
<
lb
/>
ferentia a b c d: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">figu-
<
lb
/>
ræ ſectio e f h circunfe-
<
lb
/>
rentia: </
s
>
<
s
xml:space
="
preserve
">ſit autem e h
<
lb
/>
recta linea; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">f t axis
<
lb
/>
portionis. </
s
>
<
s
xml:space
="
preserve
">Si igitur in-
<
lb
/>
clinetur figura, ita ut a-
<
lb
/>
xis portionis f t non ſit
<
lb
/>
ſecundum perpendicu-
<
lb
/>
larem. </
s
>
<
s
xml:space
="
preserve
">demonſtrandum eſt, non manere ipſam figu-
<
lb
/>
ram; </
s
>
<
s
xml:space
="
preserve
">ſed in rectum reſtitui. </
s
>
<
s
xml:space
="
preserve
">Itaque centrum ſphæræ eſt</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>