Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
51
20
52
53
21
54
55
22
56
57
23
58
59
24
60
61
25
62
63
26
64
65
27
66
67
22
68
69
29
70
71
30
72
73
37
74
75
32
76
77
25
78
79
34
80
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(7)
of 213
>
>|
DE IIS QVAE VEH. IN AQVA.
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
17
">
<
pb
o
="
7
"
file
="
0025
"
n
="
25
"
rhead
="
DE IIS QVAE VEH. IN AQVA.
"/>
</
div
>
<
div
type
="
section
"
level
="
1
"
n
="
18
">
<
head
xml:space
="
preserve
">COMMENTARIVS.</
head
>
<
p
style
="
it
">
<
s
xml:space
="
preserve
">H_
<
emph
style
="
sc
">VIVS</
emph
>
_ propoſitionis demonſtratio iniuria temporum deſidera-
<
lb
/>
tur, quam nos ita reſtituimus, ut ex figuris, quæ remanſerunt Archi
<
lb
/>
medem ſcripſiſſe colligi potuit: </
s
>
<
s
xml:space
="
preserve
">neque enim eas immutare uiſum est,
<
lb
/>
quæ uero ad declarationem, explicationémque addenda fuerant, in
<
lb
/>
commentarijs ſuppleuimus, id quod etiam præstitimus in ſecunda
<
lb
/>
propoſitione ſecundi libri.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:space
="
preserve
">_SI aliqua magnitudo ſolida leuior humido.</
s
>
<
s
xml:space
="
preserve
">]_ Ea uerba,
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0025-01a
"
xlink:href
="
note-0025-01
"/>
leuior bumido, nos addidimus, quæ in translatione non erant; </
s
>
<
s
xml:space
="
preserve
">quo-
<
lb
/>
niam de eiuſmodi magnitudinibus in bac propoſitione agitur.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
1
">
<
note
position
="
right
"
xlink:label
="
note-0025-01
"
xlink:href
="
note-0025-01a
"
xml:space
="
preserve
">A</
note
>
</
div
>
<
p
>
<
s
xml:space
="
preserve
">In humidũ demittatur, ita ut baſis portionis nõ tangat hu
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0025-02a
"
xlink:href
="
note-0025-02
"/>
midum.</
s
>
<
s
xml:space
="
preserve
">] _Hoc est in humidum ita demitt atur, ut baſis ſurſum ſpe_
<
lb
/>
_ctet; </
s
>
<
s
xml:space
="
preserve
">uertex autem deorſum. </
s
>
<
s
xml:space
="
preserve
">quod quidem opponitur ei, quod in ſe-_
<
lb
/>
_quenti dixit._ </
s
>
<
s
xml:space
="
preserve
">In humidum demittatur, ita ut baſis tota ſit in
<
lb
/>
humido. </
s
>
<
s
xml:space
="
preserve
">_His enim uerbis ſignificat portionem oppoſito modo in_
<
lb
/>
_humidum demitti, ut ſcilicet uertex ſurſum; </
s
>
<
s
xml:space
="
preserve
">baſis autem deorſum_
<
lb
/>
_uergat. </
s
>
<
s
xml:space
="
preserve
">eodem dicendi modo frequenter uſus est in ſecundo libro; </
s
>
<
s
xml:space
="
preserve
">in_
<
lb
/>
_quo de portionibus conoidis rectangulitractatur._</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
2
">
<
note
position
="
right
"
xlink:label
="
note-0025-02
"
xlink:href
="
note-0025-02a
"
xml:space
="
preserve
">B</
note
>
</
div
>
<
p
style
="
it
">
<
s
xml:space
="
preserve
">_Quoniã igitur unaquæq; </
s
>
<
s
xml:space
="
preserve
">ſphæræ portio axẽ habet in linea,_
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0025-03a
"
xlink:href
="
note-0025-03
"/>
_quæ à cẽtro ſphæræ ad eius baſim perpẽdicularis ducitur.</
s
>
<
s
xml:space
="
preserve
">]_
<
lb
/>
Iungatur enim b c, & </
s
>
<
s
xml:space
="
preserve
">k l ſecet circunferentiam a b c d in puncto g;
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">lineam uero rectam b c in m. </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">quoniam duo circuli a b c d, e f b
<
lb
/>
ſecant ſe ſe in punctis b c; </
s
>
<
s
xml:space
="
preserve
">recta linea, quæ ipſorum centra coniun-
<
lb
/>
git, uidelicet k l lineam b c bifariam, & </
s
>
<
s
xml:space
="
preserve
">ad angulos rectos ſecat: </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
ut in commentarij s in Ptolemæi planiſpbærium oſtendimus. </
s
>
<
s
xml:space
="
preserve
">quare
<
lb
/>
portionis circuli b n c diameter eſt m n; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">portionis b g c diame-
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0025-04a
"
xlink:href
="
note-0025-04
"/>
ter m g: </
s
>
<
s
xml:space
="
preserve
">nam rectæ lineæ, quæ ipſi b c æquidistantes ex utraque
<
lb
/>
parte ducuntur, cum linea n g rectos angulos faciunt; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">idcirco ab
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0025-05a
"
xlink:href
="
note-0025-05
"/>
ipſa bifariam ſecantur. </
s
>
<
s
xml:space
="
preserve
">portionis igitur ſpbæræ b n c axis eſt n m;
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">portionis b g c axis m g. </
s
>
<
s
xml:space
="
preserve
">ex quo ſequitur, portionis in bumido
<
lb
/>
demerſæ axem eſſe in linea k l; </
s
>
<
s
xml:space
="
preserve
">ipſam ſcilicet n g. </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">cum grauita-
<
lb
/>
tis centrum cuius libet ſpbæræ portionis ſit in axe; </
s
>
<
s
xml:space
="
preserve
">quod nos in libro</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>