Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
51
20
52
53
21
54
55
22
56
57
23
58
59
24
60
61
25
62
63
26
64
65
27
66
67
22
68
69
29
70
71
30
72
73
37
74
75
32
76
77
25
78
79
34
80
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div91
"
type
="
section
"
level
="
1
"
n
="
36
">
<
p
>
<
s
xml:id
="
echoid-s1341
"
xml:space
="
preserve
">
<
pb
file
="
0058
"
n
="
58
"
rhead
="
ARCHIMEDIS
"/>
& </
s
>
<
s
xml:id
="
echoid-s1342
"
xml:space
="
preserve
">quam proportionem habet quadratum e ψ ad quadra-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0058-01
"
xlink:href
="
note-0058-01a
"
xml:space
="
preserve
">G</
note
>
tum ψ b, eandem habet dimidium lineæ _k_ r ad lineã ψ b.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1343
"
xml:space
="
preserve
">quare maiorem babet proportionem _k_ r ad i y, quàm di-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0058-02
"
xlink:href
="
note-0058-02a
"
xml:space
="
preserve
">13. quin-
<
lb
/>
ti.</
note
>
midium k r ad ψ b: </
s
>
<
s
xml:id
="
echoid-s1344
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1345
"
xml:space
="
preserve
">idcirco i y minor eſt, quàm dupla
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0058-03
"
xlink:href
="
note-0058-03a
"
xml:space
="
preserve
">H</
note
>
ψ b. </
s
>
<
s
xml:id
="
echoid-s1346
"
xml:space
="
preserve
">eſt autem ipſius o i dupla. </
s
>
<
s
xml:id
="
echoid-s1347
"
xml:space
="
preserve
">ergo o i minor eſt, quàm
<
lb
/>
ψ b: </
s
>
<
s
xml:id
="
echoid-s1348
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1349
"
xml:space
="
preserve
">i ω maior, quàm ψ r. </
s
>
<
s
xml:id
="
echoid-s1350
"
xml:space
="
preserve
">ſed ψ r eſt æqualis ipſi f. </
s
>
<
s
xml:id
="
echoid-s1351
"
xml:space
="
preserve
">maior
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0058-04
"
xlink:href
="
note-0058-04a
"
xml:space
="
preserve
">K</
note
>
igitur eſt i ω, quàm f. </
s
>
<
s
xml:id
="
echoid-s1352
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1353
"
xml:space
="
preserve
">quoniam portio ad humidum in
<
lb
/>
grauitate eam ponitur habere proportionem, quam qua-
<
lb
/>
dratum f q ad quadratum b d: </
s
>
<
s
xml:id
="
echoid-s1354
"
xml:space
="
preserve
">quam uero proportionem
<
lb
/>
habet portio ad humidum in grauitate, eam habet pars ip
<
lb
/>
ſius demerſa ad totam portionem: </
s
>
<
s
xml:id
="
echoid-s1355
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1356
"
xml:space
="
preserve
">quam pars ipſius de-
<
lb
/>
merſa habet ad totam, eandem habet quadratum p m ad
<
lb
/>
quadratnm o n: </
s
>
<
s
xml:id
="
echoid-s1357
"
xml:space
="
preserve
">ſequitur quadratum p m ad quadratum
<
lb
/>
o n eam proportionem habere, quam quadratum f q ad
<
lb
/>
b d quadratum.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1358
"
xml:space
="
preserve
">
<
figure
xlink:label
="
fig-0058-01
"
xlink:href
="
fig-0058-01a
"
number
="
37
">
<
image
file
="
0058-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0058-01
"/>
</
figure
>
atque ideo ſ q æ-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0058-05
"
xlink:href
="
note-0058-05a
"
xml:space
="
preserve
">L</
note
>
qualis eſt ipſi p m.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1359
"
xml:space
="
preserve
">demõſtrata eſt au
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0058-06
"
xlink:href
="
note-0058-06a
"
xml:space
="
preserve
">M</
note
>
tem p h maior,
<
lb
/>
quàm f. </
s
>
<
s
xml:id
="
echoid-s1360
"
xml:space
="
preserve
">cõſtat igi
<
lb
/>
tur p m minorem
<
lb
/>
eſſe, quàm ſeſqui-
<
lb
/>
alterã ipſius p h:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1361
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1362
"
xml:space
="
preserve
">idcirco p h ma
<
lb
/>
iorem, quàm du-
<
lb
/>
plam h m. </
s
>
<
s
xml:id
="
echoid-s1363
"
xml:space
="
preserve
">Sit p z
<
lb
/>
ipſius z m dupla. </
s
>
<
s
xml:id
="
echoid-s1364
"
xml:space
="
preserve
">
<
lb
/>
erit t quidem cẽ-
<
lb
/>
trũ grauitatis to-
<
lb
/>
tius ſolidi: </
s
>
<
s
xml:id
="
echoid-s1365
"
xml:space
="
preserve
">centrũ
<
lb
/>
eius partis, quæ intra humidum, punctumz: </
s
>
<
s
xml:id
="
echoid-s1366
"
xml:space
="
preserve
">reliquæ uero
<
lb
/>
partis centrum erit in linea z t producta uſque ad g. </
s
>
<
s
xml:id
="
echoid-s1367
"
xml:space
="
preserve
">Eodẽ
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0058-07
"
xlink:href
="
note-0058-07a
"
xml:space
="
preserve
">N</
note
>
modo demonſtrabitur linea th perpendicularis ad ſuper-
<
lb
/>
ficiem humidi. </
s
>
<
s
xml:id
="
echoid-s1368
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1369
"
xml:space
="
preserve
">portio demerſa in humido ſeretur </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>