Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
61
25
62
63
26
64
65
27
66
67
22
68
69
29
70
71
30
72
73
37
74
75
32
76
77
25
78
79
34
80
81
35
82
83
36
84
85
37
86
87
38
88
89
39
90
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(6)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div204
"
type
="
section
"
level
="
1
"
n
="
67
">
<
p
>
<
s
xml:id
="
echoid-s3129
"
xml:space
="
preserve
">
<
pb
o
="
6
"
file
="
0123
"
n
="
123
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
habebit maiorem proportionẽ,
<
lb
/>
<
figure
xlink:label
="
fig-0123-01
"
xlink:href
="
fig-0123-01a
"
number
="
79
">
<
image
file
="
0123-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0123-01
"/>
</
figure
>
quam c b ad b a. </
s
>
<
s
xml:id
="
echoid-s3130
"
xml:space
="
preserve
">fiat o b ad b a,
<
lb
/>
ut figura rectilinea ad portio-
<
lb
/>
nes. </
s
>
<
s
xml:id
="
echoid-s3131
"
xml:space
="
preserve
">cum igitur à circulo, uel el-
<
lb
/>
lipſi, cuius grauitatis centrum
<
lb
/>
eſt b, auferatur figura rectilinea
<
lb
/>
e f g h k l m n, cuius centrum a;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3132
"
xml:space
="
preserve
">reliquæ magnitudinis ex portio
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0123-01
"
xlink:href
="
note-0123-01a
"
xml:space
="
preserve
">8. Archi-
<
lb
/>
medis.</
note
>
nibus compoſitæ centrum graui
<
lb
/>
tatis erit in linea a b producta,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s3133
"
xml:space
="
preserve
">in puncto o, extra figuram po
<
lb
/>
ſito. </
s
>
<
s
xml:id
="
echoid-s3134
"
xml:space
="
preserve
">quod quidem fieri nullo mo
<
lb
/>
do poſſe perſpicuum eſt. </
s
>
<
s
xml:id
="
echoid-s3135
"
xml:space
="
preserve
">ſequi-
<
lb
/>
tur ergo, ut circuli & </
s
>
<
s
xml:id
="
echoid-s3136
"
xml:space
="
preserve
">ellipſis cen
<
lb
/>
trum grauitatis ſit punctum a,
<
lb
/>
idem quod figuræ centrum.</
s
>
<
s
xml:id
="
echoid-s3137
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div206
"
type
="
section
"
level
="
1
"
n
="
68
">
<
head
xml:id
="
echoid-head75
"
xml:space
="
preserve
">ALITER.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3138
"
xml:space
="
preserve
">Sit circulus, uel ellipſis a b c d,
<
lb
/>
cuius diameter d b, & </
s
>
<
s
xml:id
="
echoid-s3139
"
xml:space
="
preserve
">centrum e: </
s
>
<
s
xml:id
="
echoid-s3140
"
xml:space
="
preserve
">ducaturq; </
s
>
<
s
xml:id
="
echoid-s3141
"
xml:space
="
preserve
">per e recta li
<
lb
/>
nea a c, ſecans ipſam d b adrectos angulos. </
s
>
<
s
xml:id
="
echoid-s3142
"
xml:space
="
preserve
">erunt a d c,
<
lb
/>
a b c circuli, uel ellipſis dimidiæ portiones. </
s
>
<
s
xml:id
="
echoid-s3143
"
xml:space
="
preserve
">Itaque quo-
<
lb
/>
niam por
<
lb
/>
<
figure
xlink:label
="
fig-0123-02
"
xlink:href
="
fig-0123-02a
"
number
="
80
">
<
image
file
="
0123-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0123-02
"/>
</
figure
>
tiõis a d c
<
lb
/>
cétrū gra-
<
lb
/>
uitatis eſt
<
lb
/>
in diame-
<
lb
/>
tro d e: </
s
>
<
s
xml:id
="
echoid-s3144
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3145
"
xml:space
="
preserve
">
<
lb
/>
portionis
<
lb
/>
a b c cen-
<
lb
/>
trum eſt ĩ
<
lb
/>
ipſa e b: </
s
>
<
s
xml:id
="
echoid-s3146
"
xml:space
="
preserve
">to
<
lb
/>
tius circu
<
lb
/>
li, uel ellipſis grauitatis centrum eritin diametro d b.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3147
"
xml:space
="
preserve
">Sit autem portionis a d c cẽtrum grauitatis f: </
s
>
<
s
xml:id
="
echoid-s3148
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3149
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>