Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
< >
page |< < (12) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div216" type="section" level="1" n="73">
          <p>
            <s xml:id="echoid-s3422" xml:space="preserve">
              <pb o="12" file="0135" n="135" rhead="DE CENTRO GRA VIT. SOLID."/>
            Itaque ſolidi parallelepipedi y γ centrum grauitatis eſt in
              <lb/>
            linea δ: </s>
            <s xml:id="echoid-s3423" xml:space="preserve">ſolidi u β centrum eſt in linea ε η: </s>
            <s xml:id="echoid-s3424" xml:space="preserve">& </s>
            <s xml:id="echoid-s3425" xml:space="preserve">ſolidi s z in li
              <lb/>
            nea η m, quæ quidem lineæ axes ſunt, cum planorum oppo
              <lb/>
            ſitorum centra coniungant. </s>
            <s xml:id="echoid-s3426" xml:space="preserve">ergo magnitudinis ex his ſoli
              <lb/>
            dis compoſitæ centrum grauitatis eſt in linea δ m, quod ſit
              <lb/>
            θ; </s>
            <s xml:id="echoid-s3427" xml:space="preserve">& </s>
            <s xml:id="echoid-s3428" xml:space="preserve">iuncta θ o producatur: </s>
            <s xml:id="echoid-s3429" xml:space="preserve">à puncto autem h ducatur h μ
              <lb/>
            ipſi m κ æquidiſtans, quæ cum θ o in μ conueniat. </s>
            <s xml:id="echoid-s3430" xml:space="preserve">triangu
              <lb/>
            lum igitur g h κ ad omnia triangula g z r, r β t, t γ x, x δ k,
              <lb/>
            κ δ y, y u, u s, s α h eandem habet proportionem, quam h m
              <lb/>
            ad m q; </s>
            <s xml:id="echoid-s3431" xml:space="preserve">hoc eſt, quam μ θ ad θ λ: </s>
            <s xml:id="echoid-s3432" xml:space="preserve">nam ſi h m, μ θ produci in
              <lb/>
            telligantur, quouſque coeant; </s>
            <s xml:id="echoid-s3433" xml:space="preserve">erit ob linearum q y, m k æ-
              <lb/>
            quidiſtantiam, ut h q ad q m, ita μ λ ad ad λ θ: </s>
            <s xml:id="echoid-s3434" xml:space="preserve">& </s>
            <s xml:id="echoid-s3435" xml:space="preserve">componen
              <lb/>
            do, ut h m ad m q, ita μ θ ad θ λ. </s>
            <s xml:id="echoid-s3436" xml:space="preserve">linea uero θ o maior eſt,
              <lb/>
            quàm θ λ: </s>
            <s xml:id="echoid-s3437" xml:space="preserve">habebit igitur μ θ ad θ λ maiorem proportio-
              <lb/>
              <note position="right" xlink:label="note-0135-01" xlink:href="note-0135-01a" xml:space="preserve">8. quinti.</note>
            nem, quàm ad θ o. </s>
            <s xml:id="echoid-s3438" xml:space="preserve">quare triangulum etiam g h k ad omnia
              <lb/>
            iam dicta triangula maiorem proportionẽ habebit, quàm
              <lb/>
            μ θ ad θ o. </s>
            <s xml:id="echoid-s3439" xml:space="preserve">ſed ut triangulũ g h k ad omnia triangula, ita to-
              <lb/>
            tũ priſma a f ad omnia priſmata g z r, r β t, t γ x, x δ k, k δ y,
              <lb/>
            y u, u s, s α h: </s>
            <s xml:id="echoid-s3440" xml:space="preserve">quoniam enim ſolida parallelepipeda æque al
              <lb/>
            ta, eandem inter ſe proportionem habent, quam baſes; </s>
            <s xml:id="echoid-s3441" xml:space="preserve">ut
              <lb/>
            ex trigeſimaſecunda undecimi elementorum conſtat. </s>
            <s xml:id="echoid-s3442" xml:space="preserve">ſunt
              <lb/>
              <note position="right" xlink:label="note-0135-02" xlink:href="note-0135-02a" xml:space="preserve">28. unde
                <lb/>
              cimi</note>
            autem ſolida parallelepipeda priſmatum triangulares ba-
              <lb/>
            ſes habentium dupla: </s>
            <s xml:id="echoid-s3443" xml:space="preserve">ſequitur, ut etiam huiuſmodi priſ-
              <lb/>
              <note position="right" xlink:label="note-0135-03" xlink:href="note-0135-03a" xml:space="preserve">15. quinti</note>
            matainter ſe ſint, ſicut eorum baſes. </s>
            <s xml:id="echoid-s3444" xml:space="preserve">ergo totum priſma ad
              <lb/>
            omnia priſmata maiorem proportionem habet, quam μ θ
              <lb/>
            ad θ o: </s>
            <s xml:id="echoid-s3445" xml:space="preserve">& </s>
            <s xml:id="echoid-s3446" xml:space="preserve">diuidendo ſolida parallelepipeda y γ, u β, s z ad o-
              <lb/>
              <note position="right" xlink:label="note-0135-04" xlink:href="note-0135-04a" xml:space="preserve">19. quinti
                <lb/>
              apud Cã
                <lb/>
              panum.</note>
            mnia prifmata proportionem habent maiorem, quàm μ o
              <lb/>
            ad o θ. </s>
            <s xml:id="echoid-s3447" xml:space="preserve">fiat @ o ad o θ, ut folida parallelepipeda y γ, u β, s z ad
              <lb/>
            omnia priſmata. </s>
            <s xml:id="echoid-s3448" xml:space="preserve">Itaque cum à priſmate a f, cuius cẽtrum
              <lb/>
            grauitatis eſt o, auferatur magnitudo ex ſolidis parallelepi
              <lb/>
            pedis y γ, u β, s z conſtans: </s>
            <s xml:id="echoid-s3449" xml:space="preserve">atque ipfius grauitatis centrum
              <lb/>
            ſit θ: </s>
            <s xml:id="echoid-s3450" xml:space="preserve">reliquæ magnitudinis, quæ ex omnibus priſmatibus
              <lb/>
            conſtat, grauitatis centrum erit in linea θ o producta: </s>
            <s xml:id="echoid-s3451" xml:space="preserve">& </s>
            <s xml:id="echoid-s3452" xml:space="preserve">
              <lb/>
            in puncto ν, ex o ctaua propoſitione eiuſdem libri </s>
          </p>
        </div>
      </text>
    </echo>