Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div216" type="section" level="1" n="73">
          <p>
            <s xml:id="echoid-s3500" xml:space="preserve">
              <pb file="0138" n="138" rhead="FED. COMMANDINI"/>
            ad priſma a b c e f g. </s>
            <s xml:id="echoid-s3501" xml:space="preserve">quare linea s y ad y t eandem propor-
              <lb/>
            tionem habet, quam priſma a d c e h g ad priſma a b c e f g.
              <lb/>
            </s>
            <s xml:id="echoid-s3502" xml:space="preserve">Sed priſmatis a b c e f g centrum grauitatis eſts: </s>
            <s xml:id="echoid-s3503" xml:space="preserve">& </s>
            <s xml:id="echoid-s3504" xml:space="preserve">priſma-
              <lb/>
            tis a d c e h g centrum t. </s>
            <s xml:id="echoid-s3505" xml:space="preserve">magnitudinis igitur ex his compo
              <lb/>
            ſitæ, hoc eſt totius priſmatis a g centrum grauitatis eſt pun
              <lb/>
            ctum y; </s>
            <s xml:id="echoid-s3506" xml:space="preserve">medium ſcilicet axis u x, qui oppoſitorum plano-
              <lb/>
            rum centra coniungit.</s>
            <s xml:id="echoid-s3507" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3508" xml:space="preserve">Rurſus ſit priſma baſim habens pentagonum a b c d e:
              <lb/>
            </s>
            <s xml:id="echoid-s3509" xml:space="preserve">& </s>
            <s xml:id="echoid-s3510" xml:space="preserve">quod ei opponitur ſit f g h _K_ l: </s>
            <s xml:id="echoid-s3511" xml:space="preserve">ſec enturq; </s>
            <s xml:id="echoid-s3512" xml:space="preserve">a f, b g, c h,
              <lb/>
            d _k_, el bifariam: </s>
            <s xml:id="echoid-s3513" xml:space="preserve">& </s>
            <s xml:id="echoid-s3514" xml:space="preserve">per diuiſiones ducto plano, ſectio ſit pẽ
              <lb/>
            tagonũ m n o p q. </s>
            <s xml:id="echoid-s3515" xml:space="preserve">deinde iuncta e b per lineas le, e b aliud
              <lb/>
            planum ducatur, diuidẽs priſ
              <lb/>
              <figure xlink:label="fig-0138-01" xlink:href="fig-0138-01a" number="93">
                <image file="0138-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0138-01"/>
              </figure>
            ma a k in duo priſmata, in priſ
              <lb/>
            ma ſcilicet al, cuius plana op-
              <lb/>
            poſita ſint triangula a b e f g l:
              <lb/>
            </s>
            <s xml:id="echoid-s3516" xml:space="preserve">& </s>
            <s xml:id="echoid-s3517" xml:space="preserve">in prima b _k_ cuius plana op
              <lb/>
            poſita ſint quadrilatera b c d e
              <lb/>
            g h _k_ l. </s>
            <s xml:id="echoid-s3518" xml:space="preserve">Sint autem triangulo-
              <lb/>
            rum a b e, f g l centra grauita
              <lb/>
            tis puncta r ſ: </s>
            <s xml:id="echoid-s3519" xml:space="preserve">& </s>
            <s xml:id="echoid-s3520" xml:space="preserve">b c d e, g h _k_ l
              <lb/>
            quadrilaterorum centra tu: </s>
            <s xml:id="echoid-s3521" xml:space="preserve">
              <lb/>
            iunganturq; </s>
            <s xml:id="echoid-s3522" xml:space="preserve">r s, t u o ccurren-
              <lb/>
            tes plano m n o p q in punctis
              <lb/>
            x y. </s>
            <s xml:id="echoid-s3523" xml:space="preserve">& </s>
            <s xml:id="echoid-s3524" xml:space="preserve">itidem iungãtur r t, ſu,
              <lb/>
            x y. </s>
            <s xml:id="echoid-s3525" xml:space="preserve">erit in linea r t cẽtrum gra
              <lb/>
            uitatis pentagoni a b c d e; </s>
            <s xml:id="echoid-s3526" xml:space="preserve">
              <lb/>
            quod ſit z: </s>
            <s xml:id="echoid-s3527" xml:space="preserve">& </s>
            <s xml:id="echoid-s3528" xml:space="preserve">in linea ſu cen-
              <lb/>
            trum pentagoni f g h k l: </s>
            <s xml:id="echoid-s3529" xml:space="preserve">ſit au
              <lb/>
            tem χ: </s>
            <s xml:id="echoid-s3530" xml:space="preserve">& </s>
            <s xml:id="echoid-s3531" xml:space="preserve">ducatur z χ, quæ di-
              <lb/>
            cto plano in χ occurrat. </s>
            <s xml:id="echoid-s3532" xml:space="preserve">Itaq; </s>
            <s xml:id="echoid-s3533" xml:space="preserve">
              <lb/>
            punctum x eſt centrum graui
              <lb/>
            tatis trianguli m n q, ac priſ-
              <lb/>
            matis al: </s>
            <s xml:id="echoid-s3534" xml:space="preserve">& </s>
            <s xml:id="echoid-s3535" xml:space="preserve">y grauitatis centrum quadrilateri n o p q, ac
              <lb/>
            priſmatis b k. </s>
            <s xml:id="echoid-s3536" xml:space="preserve">quare y centrum erit pentagoni m n o p q. </s>
            <s xml:id="echoid-s3537" xml:space="preserve">&</s>
            <s xml:id="echoid-s3538" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>