Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
< >
page |< < (32) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="90">
          <pb o="32" file="0175" n="175" rhead="DE CENTRO GRAVIT. SOLID."/>
          <p>
            <s xml:space="preserve">SIT fruſtũ pyramidis, uel coni, uel coni portionis a d,
              <lb/>
            cuius maior baſis a b, minor c d. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſecetur altero plano
              <lb/>
            baſi æquidiſtante, ita utſectio e f ſit proportionalis inter
              <lb/>
            baſes a b, c d. </s>
            <s xml:space="preserve">conſtituatur autẽ pyramis, uel conus, uel co-
              <lb/>
            ni portio a g b, cuius baſis ſit eadem, quæ baſis maior fru-
              <lb/>
            ſti, & </s>
            <s xml:space="preserve">altitudo æqualis. </s>
            <s xml:space="preserve">Di-
              <lb/>
              <anchor type="figure" xlink:label="fig-0175-01a" xlink:href="fig-0175-01"/>
            co fruſtum a d ad pyrami-
              <lb/>
            dem, uel conum, uel coni
              <lb/>
            portionem a g b eandem
              <lb/>
            proportionẽ habere, quã
              <lb/>
            utræque baſes, a b, c d unà
              <lb/>
            cum e f ad baſim a b. </s>
            <s xml:space="preserve">eſt
              <lb/>
            enim fruſtum a d æquale
              <lb/>
            pyramidi, uel cono, uel co-
              <lb/>
            ni portioni, cuius baſis ex
              <lb/>
            tribus baſibus a b, e f, c d
              <lb/>
            conſtat; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">altitudo ipſius
              <lb/>
            altitudini eſt æqualis: </s>
            <s xml:space="preserve">quod mox oſtendemus. </s>
            <s xml:space="preserve">Sed pyrami
              <lb/>
            des, coni, uel coni portiões,
              <lb/>
              <anchor type="figure" xlink:label="fig-0175-02a" xlink:href="fig-0175-02"/>
            quæ ſunt æquali altitudine,
              <lb/>
            eãdem inter ſe, quam baſes,
              <lb/>
            proportionem habent, ſicu-
              <lb/>
            ti demonſtratum eſt, partim
              <lb/>
            ab Euclide in duodecimo li-
              <lb/>
              <anchor type="note" xlink:label="note-0175-01a" xlink:href="note-0175-01"/>
            bro elementorum, partim à
              <lb/>
            nobis in cõmentariis in un-
              <lb/>
            decimam propoſitionẽ Ar-
              <lb/>
            chimedis de conoidibus, & </s>
            <s xml:space="preserve">
              <lb/>
            ſphæroidibus. </s>
            <s xml:space="preserve">quare pyra-
              <lb/>
            mis, uel conus, uel coni por-
              <lb/>
            tio, cuius baſis eſt tribus illis
              <lb/>
            baſibus æqualis ad a g b eam
              <lb/>
            habet proportionem, quam
              <lb/>
            baſes a b, e f, c d ad ab bafim. </s>
            <s xml:space="preserve">Fruſtum igitur a d ad a g b</s>
          </p>
        </div>
      </text>
    </echo>