Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
61
25
62
63
26
64
65
27
66
67
22
68
69
29
70
71
30
72
73
37
74
75
32
76
77
25
78
79
34
80
81
35
82
83
36
84
85
37
86
87
38
88
89
39
90
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(45)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div281
"
type
="
section
"
level
="
1
"
n
="
94
">
<
p
>
<
s
xml:id
="
echoid-s5041
"
xml:space
="
preserve
">
<
pb
o
="
45
"
file
="
0201
"
n
="
201
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
ad punctum ω. </
s
>
<
s
xml:id
="
echoid-s5042
"
xml:space
="
preserve
">Sed quoniam π circum ſcripta itidem alia
<
lb
/>
figura æquali interuallo ad portionis centrum accedit, ubi
<
lb
/>
primum φ applieuerit ſe ad ω, & </
s
>
<
s
xml:id
="
echoid-s5043
"
xml:space
="
preserve
">π ad punctũ ψ, hoc eſt ad
<
lb
/>
portionis centrum ſe applicabit. </
s
>
<
s
xml:id
="
echoid-s5044
"
xml:space
="
preserve
">quod fieri nullo modo
<
lb
/>
poſſe perſpicuum eſt. </
s
>
<
s
xml:id
="
echoid-s5045
"
xml:space
="
preserve
">non aliter idem abſurdum ſequetur,
<
lb
/>
ſi ponamus centrum portionis recedere à medio ad par-
<
lb
/>
tes ω; </
s
>
<
s
xml:id
="
echoid-s5046
"
xml:space
="
preserve
">eſſet enim aliquando centrum figuræ inſcriptæ idem
<
lb
/>
quod portionis centrũ. </
s
>
<
s
xml:id
="
echoid-s5047
"
xml:space
="
preserve
">ergo punctum e centrum erit gra
<
lb
/>
uitatis portionis a b c. </
s
>
<
s
xml:id
="
echoid-s5048
"
xml:space
="
preserve
">quod demonſtrare oportebat.</
s
>
<
s
xml:id
="
echoid-s5049
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s5050
"
xml:space
="
preserve
">Quod autem ſupra demõſtratum eſt in portione conoi-
<
lb
/>
dis recta per figuras, quæ ex cylindris æqualem altitudi-
<
lb
/>
dinem habentibus conſtant, idem ſimiliter demonſtrabi-
<
lb
/>
mus per figuras ex cylindri portionibus conſtantes in ea
<
lb
/>
portione, quæ plano non ad axem recto abſcinditur. </
s
>
<
s
xml:id
="
echoid-s5051
"
xml:space
="
preserve
">ut
<
lb
/>
enim tradidimus in commentariis in undecimam propoſi
<
lb
/>
tionem libri Archimedis de conoidibus & </
s
>
<
s
xml:id
="
echoid-s5052
"
xml:space
="
preserve
">ſphæroidibus.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s5053
"
xml:space
="
preserve
">portiones cylindri, quæ æquali ſunt altitudine eam inter ſe
<
lb
/>
ſe proportionem habent, quam ipſarum baſes; </
s
>
<
s
xml:id
="
echoid-s5054
"
xml:space
="
preserve
">baſes autẽ
<
lb
/>
quæ ſunt ellipſes ſimiles eandem proportionem habere,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0201-01
"
xlink:href
="
note-0201-01a
"
xml:space
="
preserve
">corol. 15
<
lb
/>
deconoi-
<
lb
/>
dibus &
<
lb
/>
ſphæroi-
<
lb
/>
dibus.</
note
>
quam quadrata diametrorum eiuſdem rationis, ex corol-
<
lb
/>
lario ſeptimæ propoſitionis libri de conoidibus, & </
s
>
<
s
xml:id
="
echoid-s5055
"
xml:space
="
preserve
">ſphæ-
<
lb
/>
roidibus, manifeſte apparet.</
s
>
<
s
xml:id
="
echoid-s5056
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div284
"
type
="
section
"
level
="
1
"
n
="
95
">
<
head
xml:id
="
echoid-head102
"
xml:space
="
preserve
">THEOREMA XXIIII. PROPOSITIO XXX.</
head
>
<
p
>
<
s
xml:id
="
echoid-s5057
"
xml:space
="
preserve
">SI à portione conoidis rectanguli alia portio
<
lb
/>
abſcindatur, plano baſi æquidiſtante; </
s
>
<
s
xml:id
="
echoid-s5058
"
xml:space
="
preserve
">habebit
<
lb
/>
portio tota ad eam, quæ abſciſſa eſt, duplam pro
<
lb
/>
portio nem eius, quæ eſt baſis maioris portionis
<
lb
/>
ad baſi m minoris, uel quæ axis maioris ad axem
<
lb
/>
minoris.</
s
>
<
s
xml:id
="
echoid-s5059
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>