Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
61
25
62
63
26
64
65
27
66
67
22
68
69
29
70
71
30
72
73
37
74
75
32
76
77
25
78
79
34
80
81
35
82
83
36
84
85
37
86
87
38
88
89
39
90
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
ARCHIMEDIS
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
37
">
<
p
style
="
it
">
<
s
xml:space
="
preserve
">
<
pb
file
="
0062
"
n
="
62
"
rhead
="
ARCHIMEDIS
"/>
quadratum e ψ ad quadr. </
s
>
<
s
xml:space
="
preserve
">itum ψ b.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
5
">
<
note
position
="
right
"
xlink:label
="
note-0061-08
"
xlink:href
="
note-0061-08a
"
xml:space
="
preserve
">E</
note
>
<
note
position
="
right
"
xlink:label
="
note-0061-09
"
xlink:href
="
note-0061-09a
"
xml:space
="
preserve
">4. ſexti.</
note
>
<
note
position
="
right
"
xlink:label
="
note-0061-10
"
xlink:href
="
note-0061-10a
"
xml:space
="
preserve
">8. quinti.</
note
>
<
note
position
="
right
"
xlink:label
="
note-0061-11
"
xlink:href
="
note-0061-11a
"
xml:space
="
preserve
">13. quin-
<
lb
/>
ti.</
note
>
</
div
>
<
p
style
="
it
">
<
s
xml:space
="
preserve
">_Sed quam proportionem habet qua-_
<
lb
/>
<
anchor
type
="
figure
"
xlink:label
="
fig-0062-01a
"
xlink:href
="
fig-0062-01
"/>
<
anchor
type
="
note
"
xlink:label
="
note-0062-01a
"
xlink:href
="
note-0062-01
"/>
_dratum p i ad quadratum i y, eandem li_
<
lb
/>
_nea k r habet ad lineam i y.</
s
>
<
s
xml:space
="
preserve
">]_ Est enim ex
<
lb
/>
undecima primi conicorum quadratum p i æqua
<
lb
/>
le rectangulo contento linea i o, & </
s
>
<
s
xml:space
="
preserve
">ea, iuxta quam poſſunt quæ à
<
lb
/>
ſectione ad diametrum ducuntur, uidelicet duplaipſius k r. </
s
>
<
s
xml:space
="
preserve
">atque
<
lb
/>
est i y dupla i o, extrigeſimatertia eiuſdem: </
s
>
<
s
xml:space
="
preserve
">quare ex decimaſext a
<
lb
/>
ſexti elementorum, rectangulum, quod fit ex k r, & </
s
>
<
s
xml:space
="
preserve
">i y æ quale eſt
<
lb
/>
rectangulo contento linea i o & </
s
>
<
s
xml:space
="
preserve
">ea, iuxta quam poſſunt: </
s
>
<
s
xml:space
="
preserve
">hoc eſt qua
<
lb
/>
drato p i. </
s
>
<
s
xml:space
="
preserve
">Sed ut rectangulnm ex k r, & </
s
>
<
s
xml:space
="
preserve
">i y ad quadratum i y, ita
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0062-02a
"
xlink:href
="
note-0062-02
"/>
linea κ r ad ipſam i y. </
s
>
<
s
xml:space
="
preserve
">ergo linea κ r ad i y eandem proportionem
<
lb
/>
habebit, quam rectangulum ex κ r & </
s
>
<
s
xml:space
="
preserve
">i y, hoc eſt quadratum p i ad
<
lb
/>
quadratum i y.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
6
">
<
figure
xlink:label
="
fig-0062-01
"
xlink:href
="
fig-0062-01a
">
<
image
file
="
0062-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0062-01
"/>
</
figure
>
<
note
position
="
left
"
xlink:label
="
note-0062-01
"
xlink:href
="
note-0062-01a
"
xml:space
="
preserve
">F</
note
>
<
note
position
="
left
"
xlink:label
="
note-0062-02
"
xlink:href
="
note-0062-02a
"
xml:space
="
preserve
">lem. 22.
<
lb
/>
decimi.</
note
>
</
div
>
<
p
>
<
s
xml:space
="
preserve
">Et quam proportionem habet quadratũ e ψ ad quadra
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0062-03a
"
xlink:href
="
note-0062-03
"/>
tum ψ b, eandem habet dimidium lineæ K r ad lineã ψ b.</
s
>
<
s
xml:space
="
preserve
">]</
s
>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
7
">
<
note
position
="
left
"
xlink:label
="
note-0062-03
"
xlink:href
="
note-0062-03a
"
xml:space
="
preserve
">G</
note
>
</
div
>
<
p
style
="
it
">
<
s
xml:space
="
preserve
">Nam cum quadratum e ψ poſitum ſit æquale dimidio rectanguli
<
lb
/>
contenti linea κ r, & </
s
>
<
s
xml:space
="
preserve
">ψ b; </
s
>
<
s
xml:space
="
preserve
">hoc est ei, quod dimidia ipſius κ r
<
lb
/>
& </
s
>
<
s
xml:space
="
preserve
">linea ψ b continetur: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">ut rectangulum ex dimidia κ r, & </
s
>
<
s
xml:space
="
preserve
">ψ b
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0062-04a
"
xlink:href
="
note-0062-04
"/>
ad quadratum ψ b, ita ſit dimidia κ r ad line am ψ b: </
s
>
<
s
xml:space
="
preserve
">habebit dimi-
<
lb
/>
dia κ r ad ψ b proportionem eandem, quam quadratum e ψ ad qua-
<
lb
/>
dratum ψ b.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
8
">
<
note
position
="
left
"
xlink:label
="
note-0062-04
"
xlink:href
="
note-0062-04a
"
xml:space
="
preserve
">lem. 22.
<
lb
/>
decimi</
note
>
</
div
>
<
p
style
="
it
">
<
s
xml:space
="
preserve
">_Etidcirco i y minor eſt, quàm dupla ψ b.</
s
>
<
s
xml:space
="
preserve
">]_ Quam enim pro
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0062-05a
"
xlink:href
="
note-0062-05
"/>
portionem habet dimidium κ r ad ψ b, habeat κ r ad aliam lineam.
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">erit ea maior, quàm i y; </
s
>
<
s
xml:space
="
preserve
">nempe ad quam κ r minorem proportioné
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0062-06a
"
xlink:href
="
note-0062-06
"/>
habet: </
s
>
<
s
xml:space
="
preserve
">at que erit dupla ψ b. </
s
>
<
s
xml:space
="
preserve
">ergo i y minor eſt, quam dupla ψ b.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
9
">
<
note
position
="
left
"
xlink:label
="
note-0062-05
"
xlink:href
="
note-0062-05a
"
xml:space
="
preserve
">H</
note
>
<
note
position
="
left
"
xlink:label
="
note-0062-06
"
xlink:href
="
note-0062-06a
"
xml:space
="
preserve
">10. quinti.</
note
>
</
div
>
<
p
style
="
it
">
<
s
xml:space
="
preserve
">_Et i ω maior, quam ψ r.</
s
>
<
s
xml:space
="
preserve
">]_ Cum enim o ω poſita ſit æ qualis b r
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0062-07a
"
xlink:href
="
note-0062-07
"/>
ſi ex b r dematur ψ b, & </
s
>
<
s
xml:space
="
preserve
">ex o ω dematur o i, quæ minor eſt ψ b: </
s
>
<
s
xml:space
="
preserve
">erit
<
lb
/>
reliqua i ω maior reliqua ψ r.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
10
">
<
note
position
="
left
"
xlink:label
="
note-0062-07
"
xlink:href
="
note-0062-07a
"
xml:space
="
preserve
">K</
note
>
</
div
>
<
p
style
="
it
">
<
s
xml:space
="
preserve
">_Atqueideo f q æqualis eſt ipſi p m.</
s
>
<
s
xml:space
="
preserve
">]_ Ex decimaquarta
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0062-08a
"
xlink:href
="
note-0062-08
"/>
quinti elementorum, nam linea o n ipſi b d eſt æ qualis.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
11
">
<
note
position
="
left
"
xlink:label
="
note-0062-08
"
xlink:href
="
note-0062-08a
"
xml:space
="
preserve
">L</
note
>
</
div
>
<
p
style
="
it
">
<
s
xml:space
="
preserve
">_Demonſtrata eſt autem p h maior, quàm f.</
s
>
<
s
xml:space
="
preserve
">]_ Etenim de-
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0062-09a
"
xlink:href
="
note-0062-09
"/>
monstrata est i ω maior, quàm f; </
s
>
<
s
xml:space
="
preserve
">atque est p h æqualis ipſi i ω.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
12
">
<
note
position
="
left
"
xlink:label
="
note-0062-09
"
xlink:href
="
note-0062-09a
"
xml:space
="
preserve
">M</
note
>
</
div
>
<
p
style
="
it
">
<
s
xml:space
="
preserve
">_Eodem modo demonſtrabitur t h perpendicularis ad_
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0062-10a
"
xlink:href
="
note-0062-10
"/>
</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>