Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
61
25
62
63
26
64
65
27
66
67
22
68
69
29
70
71
30
72
73
37
74
75
32
76
77
25
78
79
34
80
81
35
82
83
36
84
85
37
86
87
38
88
89
39
90
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div175
"
type
="
section
"
level
="
1
"
n
="
55
">
<
p
style
="
it
">
<
s
xml:id
="
echoid-s2517
"
xml:space
="
preserve
">
<
pb
file
="
0096
"
n
="
96
"
rhead
="
ARCHIMEDIS
"/>
minor erit: </
s
>
<
s
xml:id
="
echoid-s2518
"
xml:space
="
preserve
">linea uero b c maior, quàm b s: </
s
>
<
s
xml:id
="
echoid-s2519
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2520
"
xml:space
="
preserve
">s r; </
s
>
<
s
xml:id
="
echoid-s2521
"
xml:space
="
preserve
">hoc eſt m χ ma-
<
lb
/>
ior, quàm c r, hoc eſt, quàm p y: </
s
>
<
s
xml:id
="
echoid-s2522
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2523
"
xml:space
="
preserve
">propterea χ t minor, quàm y f.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2524
"
xml:space
="
preserve
">quòd cum p y ſit dupla y f, erit m χ maior, quàm dupla y f; </
s
>
<
s
xml:id
="
echoid-s2525
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2526
"
xml:space
="
preserve
">
<
lb
/>
multo maior, quàm dupla χ t. </
s
>
<
s
xml:id
="
echoid-s2527
"
xml:space
="
preserve
">fiat m h dupla ipſius h t: </
s
>
<
s
xml:id
="
echoid-s2528
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2529
"
xml:space
="
preserve
">copu-
<
lb
/>
lata h k producatur. </
s
>
<
s
xml:id
="
echoid-s2530
"
xml:space
="
preserve
">I am grauitatis centrum totius portionis erit
<
lb
/>
punctum k: </
s
>
<
s
xml:id
="
echoid-s2531
"
xml:space
="
preserve
">eius, quæ in humido est, h: </
s
>
<
s
xml:id
="
echoid-s2532
"
xml:space
="
preserve
">at rel iquæ partis, quæ ex-
<
lb
/>
tra humidum in linea h k producta; </
s
>
<
s
xml:id
="
echoid-s2533
"
xml:space
="
preserve
">quod ſit ω. </
s
>
<
s
xml:id
="
echoid-s2534
"
xml:space
="
preserve
">eodem modo demon
<
lb
/>
strabitur, & </
s
>
<
s
xml:id
="
echoid-s2535
"
xml:space
="
preserve
">lineam k h, & </
s
>
<
s
xml:id
="
echoid-s2536
"
xml:space
="
preserve
">quæ per h ω puncta ipſi k h æquidi-
<
lb
/>
ſtantes ducuntur, ad humidi ſuperficiem perpendiculares eſſe. </
s
>
<
s
xml:id
="
echoid-s2537
"
xml:space
="
preserve
">non
<
lb
/>
igitur maneb it
<
lb
/>
<
figure
xlink:label
="
fig-0096-01
"
xlink:href
="
fig-0096-01a
"
number
="
62
">
<
image
file
="
0096-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0096-01
"/>
</
figure
>
portio, ſed cum
<
lb
/>
uſque eò inclina-
<
lb
/>
ta fuerit, ut in
<
lb
/>
uno puncto con-
<
lb
/>
tingat ſuperfi-
<
lb
/>
cié humidi, tunc
<
lb
/>
conſiſtet. </
s
>
<
s
xml:id
="
echoid-s2538
"
xml:space
="
preserve
">an-
<
lb
/>
gulus enim ad n
<
lb
/>
angulo ad φ æ-
<
lb
/>
qualis erit; </
s
>
<
s
xml:id
="
echoid-s2539
"
xml:space
="
preserve
">li-
<
lb
/>
neáq; </
s
>
<
s
xml:id
="
echoid-s2540
"
xml:space
="
preserve
">b s lineæ
<
lb
/>
b c; </
s
>
<
s
xml:id
="
echoid-s2541
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2542
"
xml:space
="
preserve
">s r ipſi
<
lb
/>
c r. </
s
>
<
s
xml:id
="
echoid-s2543
"
xml:space
="
preserve
">quare & </
s
>
<
s
xml:id
="
echoid-s2544
"
xml:space
="
preserve
">m h
<
lb
/>
ipſi p y eſt æqua
<
lb
/>
lis. </
s
>
<
s
xml:id
="
echoid-s2545
"
xml:space
="
preserve
">Itaque ducta
<
lb
/>
h k producatur.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2546
"
xml:space
="
preserve
">erit totius portionis grauitatis centrum K; </
s
>
<
s
xml:id
="
echoid-s2547
"
xml:space
="
preserve
">eius, quæ in humido eſt
<
lb
/>
h; </
s
>
<
s
xml:id
="
echoid-s2548
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2549
"
xml:space
="
preserve
">reliquæ partis centrum in linea producta; </
s
>
<
s
xml:id
="
echoid-s2550
"
xml:space
="
preserve
">ſit autem ω. </
s
>
<
s
xml:id
="
echoid-s2551
"
xml:space
="
preserve
">per ean
<
lb
/>
dem igitur rectam lineam k h, quæ eſt ad humidi ſuperficiem perpen
<
lb
/>
dicularis, id quod in humido eſt ſurſum; </
s
>
<
s
xml:id
="
echoid-s2552
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2553
"
xml:space
="
preserve
">quod extra humidum de
<
lb
/>
orſum feretur. </
s
>
<
s
xml:id
="
echoid-s2554
"
xml:space
="
preserve
">atque ob hác cauſſam portio non amplius mouebitur; </
s
>
<
s
xml:id
="
echoid-s2555
"
xml:space
="
preserve
">
<
lb
/>
ſed conſiſtet, manebítq, ita, ut eius baſis ſuperficiem humidi in uno
<
lb
/>
punsto contingat; </
s
>
<
s
xml:id
="
echoid-s2556
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2557
"
xml:space
="
preserve
">axis, cum ipſa angulum faciat æqualem angulo
<
lb
/>
φ. </
s
>
<
s
xml:id
="
echoid-s2558
"
xml:space
="
preserve
">at que illud eſt, quod demonſtrare oportebat.</
s
>
<
s
xml:id
="
echoid-s2559
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>