Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
71
30
72
73
37
74
75
32
76
77
25
78
79
34
80
81
35
82
83
36
84
85
37
86
87
38
88
89
39
90
91
40
92
93
41
94
95
42
96
97
43
98
99
44
100
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div206
"
type
="
section
"
level
="
1
"
n
="
68
">
<
p
>
<
s
xml:id
="
echoid-s3149
"
xml:space
="
preserve
">
<
pb
file
="
0124
"
n
="
124
"
rhead
="
FED. COMMANDINI
"/>
in linea e b punctũ g, it aut ſit g e æqualis e f. </
s
>
<
s
xml:id
="
echoid-s3150
"
xml:space
="
preserve
">erit g por-
<
lb
/>
tionis a b c centrum. </
s
>
<
s
xml:id
="
echoid-s3151
"
xml:space
="
preserve
">nam ſi hæ portiones, quæ æquales
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s3152
"
xml:space
="
preserve
">ſimiles ſunt, inter ſe ſe aptentur, ita ut b e cadat in d e,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s3153
"
xml:space
="
preserve
">punctum b in d cadet, & </
s
>
<
s
xml:id
="
echoid-s3154
"
xml:space
="
preserve
">g in f: </
s
>
<
s
xml:id
="
echoid-s3155
"
xml:space
="
preserve
">figuris autem æquali-
<
lb
/>
bus, & </
s
>
<
s
xml:id
="
echoid-s3156
"
xml:space
="
preserve
">ſimilibus inter ſe aptatis, centra quoque grauitatis
<
lb
/>
ipſarum inter ſe aptata erunt, ex quinta petitione Archi-
<
lb
/>
medis in libro de centro grauitatis planorum. </
s
>
<
s
xml:id
="
echoid-s3157
"
xml:space
="
preserve
">Quare cum
<
lb
/>
portionis a d c centrum grauitatis ſit ſ: </
s
>
<
s
xml:id
="
echoid-s3158
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3159
"
xml:space
="
preserve
">portionis
<
lb
/>
a b c centrum g: </
s
>
<
s
xml:id
="
echoid-s3160
"
xml:space
="
preserve
">magnitudinis; </
s
>
<
s
xml:id
="
echoid-s3161
"
xml:space
="
preserve
">quæ ex utriſque efficitur:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3162
"
xml:space
="
preserve
">hoc eſt circuli uel ellipſis grauitatis centrum in medio li-
<
lb
/>
neæ f g, quod eſt e, conſiſtet, ex quarta propoſitione eiuſ-
<
lb
/>
dem libri Archimedis. </
s
>
<
s
xml:id
="
echoid-s3163
"
xml:space
="
preserve
">ergo circuli, uel ellipſis centrum
<
lb
/>
grauitatis eſt idem, quod figuræ centrum. </
s
>
<
s
xml:id
="
echoid-s3164
"
xml:space
="
preserve
">atque illud eſt,
<
lb
/>
quod demonſtrare oportebat.</
s
>
<
s
xml:id
="
echoid-s3165
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3166
"
xml:space
="
preserve
">Ex quibus ſequitur portionis circuli, uel ellip-
<
lb
/>
ſis, quæ dimidia maior ſit, centrum grauitatis in
<
lb
/>
diametro quoque ipſius conſiſtere.</
s
>
<
s
xml:id
="
echoid-s3167
"
xml:space
="
preserve
"/>
</
p
>
<
figure
number
="
81
">
<
image
file
="
0124-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0124-01
"/>
</
figure
>
<
p
>
<
s
xml:id
="
echoid-s3168
"
xml:space
="
preserve
">Sit enim maior portio a b c, cu_i_us diameter b d, & </
s
>
<
s
xml:id
="
echoid-s3169
"
xml:space
="
preserve
">com-
<
lb
/>
pleatur circulus, uel ellipſis, ut portio reliqua ſit a e c, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>