Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
71
30
72
73
37
74
75
32
76
77
25
78
79
34
80
81
35
82
83
36
84
85
37
86
87
38
88
89
39
90
91
40
92
93
41
94
95
42
96
97
43
98
99
44
100
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
FED. COMMANDINI
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
89
">
<
p
>
<
s
xml:space
="
preserve
">
<
pb
file
="
0174
"
n
="
174
"
rhead
="
FED. COMMANDINI
"/>
per f planum baſibus æquidiſtans ducatur, ut ſit ſectio cir
<
lb
/>
culus, uel ellipſis circa diametrum f g. </
s
>
<
s
xml:space
="
preserve
">Dico ſectionem a b
<
lb
/>
ad ſectionem f g eandem proportionem habere, quam f g
<
lb
/>
ad ipſam c d. </
s
>
<
s
xml:space
="
preserve
">Simili enim ratione, qua ſupra, demonſtrabi-
<
lb
/>
tur quadratum a b ad quadratum f g ita eſſe, ut quadratũ
<
lb
/>
f g ad c d quadratum. </
s
>
<
s
xml:space
="
preserve
">Sed circuli inter ſe eandem propor-
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0174-01a
"
xlink:href
="
note-0174-01
"/>
tionem habent, quam diametrorum quadrata. </
s
>
<
s
xml:space
="
preserve
">ellipſes au-
<
lb
/>
tem circa a b, f g, c d, quæ ſimiles ſunt, ut oſten dimus in cõ-
<
lb
/>
mentariis in principium libri Archimedis de conoidibus,
<
lb
/>
& </
s
>
<
s
xml:space
="
preserve
">ſphæroidibus, eam habẽt proportionem, quam quadrar
<
lb
/>
ta diametrorum, quæ eiuſdem rationis ſunt, ex corollaio-
<
lb
/>
ſeptimæ propoſitionis eiuſdem li-
<
lb
/>
<
anchor
type
="
figure
"
xlink:label
="
fig-0174-01a
"
xlink:href
="
fig-0174-01
"/>
bri. </
s
>
<
s
xml:space
="
preserve
">ellipſes enim nunc appello ip-
<
lb
/>
ſa ſpacia ellipſibus contenta. </
s
>
<
s
xml:space
="
preserve
">ergo
<
lb
/>
circulus, uel ellipſis a b ad circulũ,
<
lb
/>
uel ellipſim f g eam proportionem
<
lb
/>
habet, quam circulus, uel ellipſis
<
lb
/>
f g ad circulum uel ellipſim c d.
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">quod quidem facienduni propo-
<
lb
/>
ſuimus.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
2
">
<
note
position
="
left
"
xlink:label
="
note-0174-01
"
xlink:href
="
note-0174-01a
"
xml:space
="
preserve
">2. duode
<
lb
/>
cimi</
note
>
<
figure
xlink:label
="
fig-0174-01
"
xlink:href
="
fig-0174-01a
">
<
image
file
="
0174-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0174-01
"/>
</
figure
>
</
div
>
</
div
>
<
div
type
="
section
"
level
="
1
"
n
="
90
">
<
head
xml:space
="
preserve
">THEOREMA XX. PROPOSITIO XXV.</
head
>
<
p
>
<
s
xml:space
="
preserve
">
<
emph
style
="
sc
">Qvodlibet</
emph
>
fruſtum pyramidis, uel coni,
<
lb
/>
uel coni portionis ad pyramidem, uel conum, uel
<
lb
/>
coni portionem, cuius baſis eadem eſt, & </
s
>
<
s
xml:space
="
preserve
">æqualis
<
lb
/>
altitudo, eandem proportionẽ habet, quam utræ
<
lb
/>
que baſes, maior, & </
s
>
<
s
xml:space
="
preserve
">minor ſimul ſumptæ vnà cũ
<
lb
/>
ea, quæ inter ipſas ſit proportionalis, ad baſim ma
<
lb
/>
iorem.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>