Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
< >
page |< < (39) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="92">
          <p>
            <s xml:space="preserve">
              <pb o="39" file="0189" n="189" rhead="DE CENTRO GRAVIT. SOLID."/>
            dem, cuius baſis eſt quadratum a b c d, & </s>
            <s xml:space="preserve">altitudo e g: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            in pyramidem, cuius eadé baſis, altitudoq; </s>
            <s xml:space="preserve">f g; </s>
            <s xml:space="preserve">ut ſint e g,
              <lb/>
            g f ſemidiametri ſphæræ, & </s>
            <s xml:space="preserve">linea una. </s>
            <s xml:space="preserve">Cũigitur g ſit ſphæ-
              <lb/>
            ræ centrum, erit etiam centrum circuli, qui circa quadratũ
              <lb/>
            a b c d deſcribitur: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">propterea eiuſdem quadrati grauita
              <lb/>
            tis centrum: </s>
            <s xml:space="preserve">quod in prima propoſitione huius demon-
              <lb/>
            ſtratum eſt. </s>
            <s xml:space="preserve">quare pyramidis a b c d e axis erit e g: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">pyra
              <lb/>
            midis a b c d f axis f g. </s>
            <s xml:space="preserve">Itaque ſit h centrum grauitatis py-
              <lb/>
            ramidis a b c d e, & </s>
            <s xml:space="preserve">pyramidis a b c d f centrum ſit _K_: </s>
            <s xml:space="preserve">per-
              <lb/>
            ſpicuum eſt ex uigeſima ſecunda propoſitione huius, lineã
              <lb/>
            e h triplam eſſe h g: </s>
            <s xml:space="preserve">cõ
              <lb/>
              <anchor type="figure" xlink:label="fig-0189-01a" xlink:href="fig-0189-01"/>
            ponendoq; </s>
            <s xml:space="preserve">e g ipſius g
              <lb/>
            h quadruplam. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">eadẽ
              <lb/>
            ratione f g quadruplã
              <lb/>
            ipſius g k. </s>
            <s xml:space="preserve">quod cum e
              <lb/>
            g, g f ſintæquales, & </s>
            <s xml:space="preserve">h
              <lb/>
            g, g _k_ neceſſario æqua-
              <lb/>
            les erunt. </s>
            <s xml:space="preserve">ergo ex quar
              <lb/>
            ta propoſitione primi
              <lb/>
            libri Archimedis de cẽ-
              <lb/>
            tro grauitatis planorũ,
              <lb/>
            totius octahedri, quod
              <lb/>
            ex dictis pyramidibus
              <lb/>
            conſtat, centrum graui
              <lb/>
            tatis erit punctum g idem, quodipſius ſphæræ centrum.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="3">
            <figure xlink:label="fig-0189-01" xlink:href="fig-0189-01a">
              <image file="0189-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0189-01"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Sit icoſahedrum a d deſcriptum in ſphæra, cuius centrū
              <lb/>
            ſit g. </s>
            <s xml:space="preserve">Dico g ipſius icoſahedri grauitatis eſſe centrum. </s>
            <s xml:space="preserve">Si
              <lb/>
            enim ab angnlo a per g ducatur rectalinea uſque ad ſphæ
              <lb/>
            ræ ſuperficiem; </s>
            <s xml:space="preserve">conſtat ex ſexta decima propoſitione libri
              <lb/>
            tertii decimi elementorum, cadere eam in angulum ipſi a
              <lb/>
            oppoſitum. </s>
            <s xml:space="preserve">cadat in d: </s>
            <s xml:space="preserve">ſitq; </s>
            <s xml:space="preserve">una aliqua baſis icoſahedri tri-
              <lb/>
            angulum a b c: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iunctæ b g, c g producantur, & </s>
            <s xml:space="preserve">cadant in
              <lb/>
            angulos e f, ipſis b c oppoſitos. </s>
            <s xml:space="preserve">Itaque per triangula
              <lb/>
            a b c, d e f ducantur plana ſphæram ſecantia. </s>
            <s xml:space="preserve">erunt hæ ſe-</s>
          </p>
        </div>
      </text>
    </echo>