Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
< >
page |< < (44) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="94">
          <p>
            <s xml:space="preserve">
              <pb o="44" file="0199" n="199" rhead="DE CENTRO GRAVIT. SOLID."/>
            relinquetur p e ipſi n χ æqualis. </s>
            <s xml:space="preserve">cum autem b e ſit dupla
              <lb/>
            e d, & </s>
            <s xml:space="preserve">o p dupla p n, hoc eſt ipſius e χ, & </s>
            <s xml:space="preserve">reliquum, uideli-
              <lb/>
            cet b o unà cum p e ipſius reliqui χ d duplnm erit. </s>
            <s xml:space="preserve">eſtque
              <lb/>
              <anchor type="note" xlink:label="note-0199-01a" xlink:href="note-0199-01"/>
            b o dupla ζ d. </s>
            <s xml:space="preserve">ergo p e, hoc eſt n χ ipſius χ ρ dupla. </s>
            <s xml:space="preserve">ſed d n
              <lb/>
            dupla eſt n ζ. </s>
            <s xml:space="preserve">reliqua igitur d χ dupla reliquæ χ n. </s>
            <s xml:space="preserve">ſunt au-
              <lb/>
            tem d χ, p n inter ſe æquales: </s>
            <s xml:space="preserve">itemq; </s>
            <s xml:space="preserve">æquales χ n, p e. </s>
            <s xml:space="preserve">qua-
              <lb/>
            re conſtat n p ipſius p e duplam eſſe. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">idcirco p e ipſi e n
              <lb/>
            æqualem. </s>
            <s xml:space="preserve">Rurſus cum ſit μ ν dupla o ν, & </s>
            <s xml:space="preserve">μ σ dupla σ ν; </s>
            <s xml:space="preserve">erit
              <lb/>
            etiam reliqua ν σ o dupla. </s>
            <s xml:space="preserve">Eadem quoque ratione
              <lb/>
            cõcludetur π υ dupla υ m. </s>
            <s xml:space="preserve">ergo ut ν σ ad σ O, ita π υ ad υ m:
              <lb/>
            </s>
            <s xml:space="preserve">componendoq;</s>
            <s xml:space="preserve">, & </s>
            <s xml:space="preserve">permutando, ut υ o ad π m, ita o σ ad
              <lb/>
            m υ & </s>
            <s xml:space="preserve">ſunt æquales ν o, π m. </s>
            <s xml:space="preserve">quare & </s>
            <s xml:space="preserve">o σ, m υ æquales. </s>
            <s xml:space="preserve">præ
              <lb/>
            terea σ π dupla eſt π τ, & </s>
            <s xml:space="preserve">ν π ipſius π m. </s>
            <s xml:space="preserve">reliqua igitur σ ν re
              <lb/>
            liquæ m τ dupla. </s>
            <s xml:space="preserve">atque erat ν σ dupla σ o. </s>
            <s xml:space="preserve">ergo m τ, σ o æ-
              <lb/>
            quales ſunt: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ita æquales m υ, n φ. </s>
            <s xml:space="preserve">at o σ, eſt æqualis
              <lb/>
            m υ. </s>
            <s xml:space="preserve">Sequitur igitur, ut omnes o σ, m τ, m υ, n φ in-
              <lb/>
            ter ſe ſint æquales. </s>
            <s xml:space="preserve">Sed ut ρ π ad π τ, hoc eſt ut 3 ad 2, ita n d
              <lb/>
            ad d χ: </s>
            <s xml:space="preserve">permutãdoq; </s>
            <s xml:space="preserve">ut ρ π ad n d, ita π τ ad d χ. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſũt æqua
              <lb/>
            les ζ π, n d. </s>
            <s xml:space="preserve">ergo d χ, hoc eſt n p, & </s>
            <s xml:space="preserve">π τ æquales. </s>
            <s xml:space="preserve">Sed etiam æ-
              <lb/>
            quales n π, π m. </s>
            <s xml:space="preserve">reliqua igitur π p reliquæ m τ, hoc eſt ipſi
              <lb/>
            n φ æqualis erit. </s>
            <s xml:space="preserve">quare dempta p π ex p e, & </s>
            <s xml:space="preserve">φ n dempta ex
              <lb/>
            n e, relinquitur p e æqualis e φ. </s>
            <s xml:space="preserve">Itaque π, ρ centra figurarũ
              <lb/>
            ſecundo loco deſcriptarum a primis centris p n æquali in-
              <lb/>
            teruallo recedunt. </s>
            <s xml:space="preserve">quòd ſi rurſus aliæ figuræ deſcribantur,
              <lb/>
            eodem modo demonſtrabimus earum centra æqualiter ab
              <lb/>
            his recedere, & </s>
            <s xml:space="preserve">ad portionis conoidis centrum propius ad
              <lb/>
            moueri. </s>
            <s xml:space="preserve">Ex quibus conſtat lineam π φ à centro grauitatis
              <lb/>
            portionis diuidi in partes æquales. </s>
            <s xml:space="preserve">Si enim fieri poteſt, non
              <lb/>
            ſit centrum in puncto e, quod eſt lineæ π φ medium: </s>
            <s xml:space="preserve">ſed in
              <lb/>
            ψ: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ipſi π ψ æqualis fiat φ ω. </s>
            <s xml:space="preserve">Cum igitur in portione ſolida
              <lb/>
            quædam figura inſcribi posſit, ita ut linea, quæ inter cen-
              <lb/>
            trum grauitatis portionis, & </s>
            <s xml:space="preserve">inſcriptæ figuræ interiicitur,
              <lb/>
            qualibet linea propoſita ſit minor, quod proxime demon-
              <lb/>
            ſtrauimus: </s>
            <s xml:space="preserve">perueniet tandem φ centrum inſcriptæ figuræ</s>
          </p>
        </div>
      </text>
    </echo>