Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
< >
page |< < (46) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div284" type="section" level="1" n="95">
          <p>
            <s xml:id="echoid-s5082" xml:space="preserve">
              <pb o="46" file="0203" n="203" rhead="DE CENTRO GRAVIT. SOLID."/>
            ro ita demonſtrabitur. </s>
            <s xml:id="echoid-s5083" xml:space="preserve">Ducatur à puncto b ad planum ba-
              <lb/>
            ſis a c perpendicularis linea b h, quæ ipſam e fin K ſecet.
              <lb/>
            </s>
            <s xml:id="echoid-s5084" xml:space="preserve">erit b h altitudo coni, uel coni portionis a b c: </s>
            <s xml:id="echoid-s5085" xml:space="preserve">& </s>
            <s xml:id="echoid-s5086" xml:space="preserve">b K altitu
              <lb/>
              <note position="right" xlink:label="note-0203-01" xlink:href="note-0203-01a" xml:space="preserve">16. unde-
                <lb/>
              cimi.</note>
            do e f g. </s>
            <s xml:id="echoid-s5087" xml:space="preserve">Quod cum lineæ a c, e f inter ſe æ quidiſtent, ſunt
              <lb/>
            enim planorum æ quidiſtantium ſectiones: </s>
            <s xml:id="echoid-s5088" xml:space="preserve">habebit d b ad
              <lb/>
              <note position="right" xlink:label="note-0203-02" xlink:href="note-0203-02a" xml:space="preserve">4 ſexti.</note>
            b g proportionem ean dem, quam h b ad b k. </s>
            <s xml:id="echoid-s5089" xml:space="preserve">quare por-
              <lb/>
            tio conoidis a b c ad portionem e f g proportionem habet
              <lb/>
            compoſitam ex proportione baſis a c ad baſim e f; </s>
            <s xml:id="echoid-s5090" xml:space="preserve">& </s>
            <s xml:id="echoid-s5091" xml:space="preserve">ex
              <lb/>
            proportione d b axis ad axem b g. </s>
            <s xml:id="echoid-s5092" xml:space="preserve">Sed circulus, uel
              <lb/>
              <note position="right" xlink:label="note-0203-03" xlink:href="note-0203-03a" xml:space="preserve">2. duode
                <lb/>
              cimi</note>
            ellipſis circa diametrum a c ad circulum, uel ellipſim
              <lb/>
              <note position="right" xlink:label="note-0203-04" xlink:href="note-0203-04a" xml:space="preserve">7. de co-
                <lb/>
              noidibus
                <lb/>
              & ſphæ-
                <lb/>
              roidibus</note>
            circa e f, eſt ut quadratum a c ad quadratum e f; </s>
            <s xml:id="echoid-s5093" xml:space="preserve">hoc eſt ut
              <lb/>
            quadratũ a d ad quadratũ e g. </s>
            <s xml:id="echoid-s5094" xml:space="preserve">& </s>
            <s xml:id="echoid-s5095" xml:space="preserve">quadratum a d ad quadra
              <lb/>
            tum e g eſt, ut linea d b ad lineam b g. </s>
            <s xml:id="echoid-s5096" xml:space="preserve">circulus igitur, uel el
              <lb/>
            lipſis circa diametrum a c ad circulũ, uel ellipſim circa e f,
              <lb/>
              <note position="right" xlink:label="note-0203-05" xlink:href="note-0203-05a" xml:space="preserve">15. quinti</note>
            hoc eſt baſis ad baſim eandem proportionem habet, quã
              <lb/>
              <note position="right" xlink:label="note-0203-06" xlink:href="note-0203-06a" xml:space="preserve">20. primi
                <lb/>
              conicorũ</note>
            d b axis ad axem b g. </s>
            <s xml:id="echoid-s5097" xml:space="preserve">ex quibus ſequitur portionem a b c
              <lb/>
            ad portionem e b f habere proportionem duplam eius,
              <lb/>
            quæ eſt baſis a c ad bafim e f: </s>
            <s xml:id="echoid-s5098" xml:space="preserve">uel axis d b ad b g axem. </s>
            <s xml:id="echoid-s5099" xml:space="preserve">quod
              <lb/>
            demonſtrandum proponebatur.</s>
            <s xml:id="echoid-s5100" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div286" type="section" level="1" n="96">
          <head xml:id="echoid-head103" xml:space="preserve">THEOREMA XXV. PROPOSITIO XXXI.</head>
          <p>
            <s xml:id="echoid-s5101" xml:space="preserve">Cuiuslibet fruſti à portione rectanguli conoi
              <lb/>
            dis abſcisſi, centrum grauitatis eſt in axe, ita ut
              <lb/>
            demptis primum à quadrato, quod fit ex diame-
              <lb/>
            tro maioris baſis, tertia ipſius parte, & </s>
            <s xml:id="echoid-s5102" xml:space="preserve">duabus
              <lb/>
            tertiis quadrati, quod fit ex diametro baſis mino-
              <lb/>
            ris: </s>
            <s xml:id="echoid-s5103" xml:space="preserve">deinde à tertia parte quadrati maioris baſis
              <lb/>
            rurſus dempta portione, ad quam reliquum qua
              <lb/>
            drati baſis maioris unà cum dicta portione duplã
              <lb/>
            proportionem habeat eius, quæ eſt quadrati </s>
          </p>
        </div>
      </text>
    </echo>