Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="90">
          <p>
            <s xml:space="preserve">
              <pb file="0176" n="176" rhead="FED. COMMANDINI"/>
            pyramidem, uel conum, uel coni portionem candem pro-
              <lb/>
            portionem habet, quam baſes ab, cd unà cum e ſ ad ba-
              <lb/>
            ſim a b. </s>
            <s xml:space="preserve">quod demonſtrare uolebamus.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0175-01" xlink:href="fig-0175-01a">
              <image file="0175-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0175-01"/>
            </figure>
            <figure xlink:label="fig-0175-02" xlink:href="fig-0175-02a">
              <image file="0175-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0175-02"/>
            </figure>
            <note position="right" xlink:label="note-0175-01" xlink:href="note-0175-01a" xml:space="preserve">6. 11. duo
              <lb/>
            decimi</note>
          </div>
          <p>
            <s xml:space="preserve">Fruſtum uero a d æquale eſſe pyramidi, uel co
              <lb/>
            no, uel coni portioni, cuius baſis conſtat ex baſi-
              <lb/>
            bus a b, c d, e f, & </s>
            <s xml:space="preserve">altitudo fruſti altitudini eſt æ-
              <lb/>
            qualis, hoc modo oſten demus.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Sit fruſtum pyramidis a b c d e f, cuius maior baſis trian-
              <lb/>
            gulum a b c; </s>
            <s xml:space="preserve">minor d e f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſecetur plano baſibus æquidi-
              <lb/>
            ſtante, quod ſectionem faciat triangulum g h k inter trian-
              <lb/>
            gula a b c, d e f proportionale. </s>
            <s xml:space="preserve">Iam ex iis, quæ demonſtrata
              <lb/>
            ſuntin 23. </s>
            <s xml:space="preserve">huius, patet ſruſtum a b c d e f diuidi in tres pyra
              <lb/>
            mides proportionales; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">earum maiorem eſſe pyramidẽ
              <lb/>
            a b c d minorẽ uero d e f b. </s>
            <s xml:space="preserve">ergo pyramis à triangulo g h k
              <lb/>
            conſtituta, quæ altitudinem habeat ſruſti altitudini æqua-
              <lb/>
            lem, proportionalis eſtinter pyramides a b c d, d e f b: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            idcirco fruſtum a b c d e f tribus dictis pyramidibus æqua
              <lb/>
            le erit. </s>
            <s xml:space="preserve">Itaque ſi intelligatur alia pyra-
              <lb/>
              <anchor type="figure" xlink:label="fig-0176-01a" xlink:href="fig-0176-01"/>
            mis æque alta, quæ baſim habeat ex tri
              <lb/>
            bus baſibus a b c, d e f, g h k conſtan-
              <lb/>
            tem; </s>
            <s xml:space="preserve">perſpicuum eſtipſam eiſdem py-
              <lb/>
            ramidibus, & </s>
            <s xml:space="preserve">propterea ipſi fruſto æ-
              <lb/>
            qualem eſſe.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="2">
            <figure xlink:label="fig-0176-01" xlink:href="fig-0176-01a">
              <image file="0176-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0176-01"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Rurſus ſit ſruſtum pyramidis a g, cu
              <lb/>
            ius maior baſis quadrilaterum a b c d,
              <lb/>
            minor e f g h: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſecetur plano baſi-
              <lb/>
            bus æquidiſtante, ita ut fiat ſectio qua-
              <lb/>
            drilaterum K lm n, quod ſit proportio
              <lb/>
            nale inter quadrilatera a b c d, e f g h. </s>
            <s xml:space="preserve">Dico pyramidem,
              <lb/>
            cuius baſis ſit æqualis tribus quadrilateris a b c d, _k_ l m n,
              <lb/>
            e f g h, & </s>
            <s xml:space="preserve">altitudo æqualis altitudini fruſti, ipſi fruſto a g
              <lb/>
            æqualem eſſe. </s>
            <s xml:space="preserve">Ducatur enim planum per lineas f b, h d,</s>
          </p>
        </div>
      </text>
    </echo>