Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
< >
page |< < of 213 > >|
ARCHIMEDIS
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="23">
          <pb file="0034" n="34" rhead="ARCHIMEDIS"/>
          <p style="it">
            <s xml:space="preserve">_Erit r o minor, quàm, quæ uſque ad axem]_ Ex decima
              <lb/>
              <anchor type="note" xlink:label="note-0034-01a" xlink:href="note-0034-01"/>
            propoſitione quinti libri elementorum. </s>
            <s xml:space="preserve">Linea, quæ uſque ad axem
              <lb/>
            apud Archimedem, eſt dimidia eius, iuxta quam poſſunt, quæ à ſe-
              <lb/>
            ctione ducuntur; </s>
            <s xml:space="preserve">ut ex quarta propoſitione libri de conoidibus, & </s>
            <s xml:space="preserve">
              <lb/>
            ſphæroidibus apparet. </s>
            <s xml:space="preserve">cur uero ita appellata ſit, nos in commentarijs
              <lb/>
            in eam editis tradidimus.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="5">
            <note position="left" xlink:label="note-0034-01" xlink:href="note-0034-01a" xml:space="preserve">E</note>
          </div>
          <p style="it">
            <s xml:space="preserve">_Quare angulus r p ω acutus erit]_ producatur linea n o ad
              <lb/>
              <anchor type="note" xlink:label="note-0034-02a" xlink:href="note-0034-02"/>
            h, ut ſit r h æqualis ei, quæ uſque ad axem. </s>
            <s xml:space="preserve">ſi igitur à puncto h du-
              <lb/>
            catur linea ad rectos angulos ipſi n h, conueniet cum f p extra ſe-
              <lb/>
            ctionem: </s>
            <s xml:space="preserve">ducta enim per o ipſi a l æquidiſtans, extra ſectionem ca
              <lb/>
            dit ex decima ſepti-
              <lb/>
              <anchor type="figure" xlink:label="fig-0034-01a" xlink:href="fig-0034-01"/>
            ma primi libri coni-
              <lb/>
            corum. </s>
            <s xml:space="preserve">Itaque con-
              <lb/>
            ueniat in u. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quo
              <lb/>
            niam f p est æqui-
              <lb/>
            distans diametro;
              <lb/>
            </s>
            <s xml:space="preserve">h u uero ad diame-
              <lb/>
            trum perpendicula-
              <lb/>
            ris; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">r h æqualis
              <lb/>
            ei, quæ uſq; </s>
            <s xml:space="preserve">ad axẽ,
              <lb/>
            linea à puncto r ad
              <lb/>
            u ducta angulos re-
              <lb/>
            ctos faciet cum ea, quæ ſectionem in puncto p contingit, hoc eſt cum
              <lb/>
            k ω, ut mox demonstrabitur. </s>
            <s xml:space="preserve">quare perpendicularis r t inter p & </s>
            <s xml:space="preserve">
              <lb/>
            ω cadet; </s>
            <s xml:space="preserve">erítque r p ω angulus acutus.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="6">
            <note position="left" xlink:label="note-0034-02" xlink:href="note-0034-02a" xml:space="preserve">F</note>
            <figure xlink:label="fig-0034-01" xlink:href="fig-0034-01a">
              <image file="0034-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0034-01"/>
            </figure>
          </div>
          <p style="it">
            <s xml:space="preserve">Sit rectanguli coni ſectio, ſeu parabole a b c, cuius
              <lb/>
            diameter b d: </s>
            <s xml:space="preserve">atque ipſam contingat linea e f in pun-
              <lb/>
            cto g: </s>
            <s xml:space="preserve">ſumatur autem in diametro b d linea h k æqua-
              <lb/>
            lis ei, quæ uſque ad axem: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per g ducta g l, diame-
              <lb/>
            tro æquidistante, à puncto _k_ ad rectos angulos ipſi b d
              <lb/>
            ducatur _k_ m, ſecans g l in m. </s>
            <s xml:space="preserve">Dico lineam ab h ad</s>
          </p>
        </div>
      </text>
    </echo>