Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
91
40
92
93
41
94
95
42
96
97
43
98
99
44
100
101
43
102
103
104
105
106
107
108
109
110
111
112
113
1
114
115
2
116
117
3
118
119
4
120
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(2)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div192
"
type
="
section
"
level
="
1
"
n
="
64
">
<
p
>
<
s
xml:id
="
echoid-s2839
"
xml:space
="
preserve
">
<
pb
o
="
2
"
file
="
0115
"
n
="
115
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
tur, centrum grauitatis eſt idem, quod circuli cen
<
lb
/>
trum.</
s
>
<
s
xml:id
="
echoid-s2840
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2841
"
xml:space
="
preserve
">Sit primo triangulum æquilaterum a b c in circulo de-
<
lb
/>
ſcriptum: </
s
>
<
s
xml:id
="
echoid-s2842
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2843
"
xml:space
="
preserve
">diuiſa a c bifariam in d, ducatur b d. </
s
>
<
s
xml:id
="
echoid-s2844
"
xml:space
="
preserve
">erit in li-
<
lb
/>
nea b d centrum grauitatis triãguli a b c, ex tertia decima
<
lb
/>
primi libri Archimedis de centro grauitatis planorum. </
s
>
<
s
xml:id
="
echoid-s2845
"
xml:space
="
preserve
">Et
<
lb
/>
quoniam linea a b eſt æqualis
<
lb
/>
<
figure
xlink:label
="
fig-0115-01
"
xlink:href
="
fig-0115-01a
"
number
="
70
">
<
image
file
="
0115-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0115-01
"/>
</
figure
>
lineæ b c; </
s
>
<
s
xml:id
="
echoid-s2846
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2847
"
xml:space
="
preserve
">a d ipſi d c; </
s
>
<
s
xml:id
="
echoid-s2848
"
xml:space
="
preserve
">eſtq́;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2849
"
xml:space
="
preserve
">b d utrique communis: </
s
>
<
s
xml:id
="
echoid-s2850
"
xml:space
="
preserve
">trian-
<
lb
/>
gulum a b d æquale erit trian
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0115-01
"
xlink:href
="
note-0115-01a
"
xml:space
="
preserve
">8. primi.</
note
>
gulo c b d: </
s
>
<
s
xml:id
="
echoid-s2851
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2852
"
xml:space
="
preserve
">anguli angulis æ-
<
lb
/>
quales, qui æqualibus lateri-
<
lb
/>
bus ſubtenduntur. </
s
>
<
s
xml:id
="
echoid-s2853
"
xml:space
="
preserve
">ergo angu
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0115-02
"
xlink:href
="
note-0115-02a
"
xml:space
="
preserve
">13. primi.</
note
>
li ad d utriq; </
s
>
<
s
xml:id
="
echoid-s2854
"
xml:space
="
preserve
">recti ſunt. </
s
>
<
s
xml:id
="
echoid-s2855
"
xml:space
="
preserve
">quòd
<
lb
/>
cum linea b d ſecet a c biſa-
<
lb
/>
riam, & </
s
>
<
s
xml:id
="
echoid-s2856
"
xml:space
="
preserve
">ad angulos rectos; </
s
>
<
s
xml:id
="
echoid-s2857
"
xml:space
="
preserve
">in
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0115-03
"
xlink:href
="
note-0115-03a
"
xml:space
="
preserve
">corol. p@@
<
lb
/>
mæ tertii</
note
>
ipſa b d eſt centrum circuli.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2858
"
xml:space
="
preserve
">quare in eadem b d linea erit
<
lb
/>
centrum grauitatis trianguli, & </
s
>
<
s
xml:id
="
echoid-s2859
"
xml:space
="
preserve
">circuli centrum. </
s
>
<
s
xml:id
="
echoid-s2860
"
xml:space
="
preserve
">Similiter
<
lb
/>
diuiſa a b bifariam in e, & </
s
>
<
s
xml:id
="
echoid-s2861
"
xml:space
="
preserve
">ducta c e, oſtendetur in ipſa utrũ
<
lb
/>
que centrum contineri. </
s
>
<
s
xml:id
="
echoid-s2862
"
xml:space
="
preserve
">ergo ea erunt in puncto, in quo li-
<
lb
/>
neæ b d, c e conueniunt. </
s
>
<
s
xml:id
="
echoid-s2863
"
xml:space
="
preserve
">trianguli igitur a b c centrum gra
<
lb
/>
uitatis eſt idem, quod circuli centrum.</
s
>
<
s
xml:id
="
echoid-s2864
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2865
"
xml:space
="
preserve
">Sit quadratum a b c d in cir-
<
lb
/>
<
figure
xlink:label
="
fig-0115-02
"
xlink:href
="
fig-0115-02a
"
number
="
71
">
<
image
file
="
0115-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0115-02
"/>
</
figure
>
culo deſcriptum: </
s
>
<
s
xml:id
="
echoid-s2866
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2867
"
xml:space
="
preserve
">ducantur
<
lb
/>
a c, b d, quæ conueniant in e. </
s
>
<
s
xml:id
="
echoid-s2868
"
xml:space
="
preserve
">er-
<
lb
/>
go punctum e eſt centrum gra
<
lb
/>
uitatis quadrati, ex decima eiuſ
<
lb
/>
dem libri Archimedis. </
s
>
<
s
xml:id
="
echoid-s2869
"
xml:space
="
preserve
">Sed cum
<
lb
/>
omnes anguli ad a b c d recti
<
lb
/>
ſint; </
s
>
<
s
xml:id
="
echoid-s2870
"
xml:space
="
preserve
">erit a b c femicirculus:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2871
"
xml:space
="
preserve
">
<
note
position
="
right
"
xlink:label
="
note-0115-04
"
xlink:href
="
note-0115-04a
"
xml:space
="
preserve
">51. tortil.</
note
>
itemq́; </
s
>
<
s
xml:id
="
echoid-s2872
"
xml:space
="
preserve
">b c d: </
s
>
<
s
xml:id
="
echoid-s2873
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2874
"
xml:space
="
preserve
">propterea li-
<
lb
/>
neæ a c, b d diametri circuli:</
s
>
<
s
xml:id
="
echoid-s2875
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>