Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
91
40
92
93
41
94
95
42
96
97
43
98
99
44
100
101
43
102
103
104
105
106
107
108
109
110
111
112
113
1
114
115
2
116
117
3
118
119
4
120
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(4)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div199
"
type
="
section
"
level
="
1
"
n
="
65
">
<
p
>
<
s
xml:id
="
echoid-s2993
"
xml:space
="
preserve
">
<
pb
o
="
4
"
file
="
0119
"
n
="
119
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
o n ipſi a c. </
s
>
<
s
xml:id
="
echoid-s2994
"
xml:space
="
preserve
">Quoniam enim triangulorum a b k, a d k, latus
<
lb
/>
b k eſt æquale lateri k d, & </
s
>
<
s
xml:id
="
echoid-s2995
"
xml:space
="
preserve
">a k utrique commune; </
s
>
<
s
xml:id
="
echoid-s2996
"
xml:space
="
preserve
">anguliq́;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2997
"
xml:space
="
preserve
">ad k recti baſis a b baſi a d; </
s
>
<
s
xml:id
="
echoid-s2998
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2999
"
xml:space
="
preserve
">reliqui anguli reliquis an-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0119-01
"
xlink:href
="
note-0119-01a
"
xml:space
="
preserve
">8. primi</
note
>
gulis æquales erunt. </
s
>
<
s
xml:id
="
echoid-s3000
"
xml:space
="
preserve
">eadem quoqueratione oſtendetur b c
<
lb
/>
æqualis c d; </
s
>
<
s
xml:id
="
echoid-s3001
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3002
"
xml:space
="
preserve
">a b ipſi
<
lb
/>
<
figure
xlink:label
="
fig-0119-01
"
xlink:href
="
fig-0119-01a
"
number
="
75
">
<
image
file
="
0119-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0119-01
"/>
</
figure
>
b c. </
s
>
<
s
xml:id
="
echoid-s3003
"
xml:space
="
preserve
">quare omnes a b,
<
lb
/>
b c, c d, d a ſunt æqua-
<
lb
/>
les. </
s
>
<
s
xml:id
="
echoid-s3004
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3005
"
xml:space
="
preserve
">quoniam anguli
<
lb
/>
ad a æquales ſunt angu
<
lb
/>
lis ad c; </
s
>
<
s
xml:id
="
echoid-s3006
"
xml:space
="
preserve
">erunt anguli b
<
lb
/>
a c, a c d coalterni inter
<
lb
/>
ſe æquales; </
s
>
<
s
xml:id
="
echoid-s3007
"
xml:space
="
preserve
">itemq́; </
s
>
<
s
xml:id
="
echoid-s3008
"
xml:space
="
preserve
">d a c,
<
lb
/>
a c b. </
s
>
<
s
xml:id
="
echoid-s3009
"
xml:space
="
preserve
">ergo c d ipſi b a;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3010
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3011
"
xml:space
="
preserve
">a d ipſi b c æquidi-
<
lb
/>
ſtat. </
s
>
<
s
xml:id
="
echoid-s3012
"
xml:space
="
preserve
">Atuero cum lineæ
<
lb
/>
a b, c d inter ſe æquidi-
<
lb
/>
ſtantes bifariam ſecen-
<
lb
/>
tur in punctis e g; </
s
>
<
s
xml:id
="
echoid-s3013
"
xml:space
="
preserve
">erit li
<
lb
/>
nea l e k g n diameter ſe
<
lb
/>
ctionis, & </
s
>
<
s
xml:id
="
echoid-s3014
"
xml:space
="
preserve
">linea una, ex
<
lb
/>
demonſtratis in uigeſi-
<
lb
/>
ma octaua ſecundi coni
<
lb
/>
corum. </
s
>
<
s
xml:id
="
echoid-s3015
"
xml:space
="
preserve
">Et eadem ratione linea una m f k h o. </
s
>
<
s
xml:id
="
echoid-s3016
"
xml:space
="
preserve
">Sunt autẽ a d,
<
lb
/>
b c inter ſe ſe æquales, & </
s
>
<
s
xml:id
="
echoid-s3017
"
xml:space
="
preserve
">æquidiſtantes. </
s
>
<
s
xml:id
="
echoid-s3018
"
xml:space
="
preserve
">quare & </
s
>
<
s
xml:id
="
echoid-s3019
"
xml:space
="
preserve
">earum di-
<
lb
/>
midiæ a h, b f; </
s
>
<
s
xml:id
="
echoid-s3020
"
xml:space
="
preserve
">itemq́; </
s
>
<
s
xml:id
="
echoid-s3021
"
xml:space
="
preserve
">h d, f e; </
s
>
<
s
xml:id
="
echoid-s3022
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3023
"
xml:space
="
preserve
">quæ ipſas coniunguntrectæ
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0119-02
"
xlink:href
="
note-0119-02a
"
xml:space
="
preserve
">33. primit</
note
>
lineæ æquales, & </
s
>
<
s
xml:id
="
echoid-s3024
"
xml:space
="
preserve
">æquidiſtantes erunt. </
s
>
<
s
xml:id
="
echoid-s3025
"
xml:space
="
preserve
">æquidiſtãt igitur b a,
<
lb
/>
c d diametro m o: </
s
>
<
s
xml:id
="
echoid-s3026
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3027
"
xml:space
="
preserve
">pariter a d, b c ipſi l n æquidiſtare o-
<
lb
/>
ſtendemus. </
s
>
<
s
xml:id
="
echoid-s3028
"
xml:space
="
preserve
">Si igitur manẽte diametro a c intelligatur a b c
<
lb
/>
portio ellipſis ad portionem a d c moueri, cum primum b
<
lb
/>
applicuerit ad d, cõgruet tota portio toti portioni, lineaq́;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3029
"
xml:space
="
preserve
">b a lineæ a d; </
s
>
<
s
xml:id
="
echoid-s3030
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3031
"
xml:space
="
preserve
">b c ipſi c d congruet: </
s
>
<
s
xml:id
="
echoid-s3032
"
xml:space
="
preserve
">punctum uero e ca-
<
lb
/>
det in h; </
s
>
<
s
xml:id
="
echoid-s3033
"
xml:space
="
preserve
">f in g: </
s
>
<
s
xml:id
="
echoid-s3034
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3035
"
xml:space
="
preserve
">linea k e in lineam k h: </
s
>
<
s
xml:id
="
echoid-s3036
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3037
"
xml:space
="
preserve
">k f in k g. </
s
>
<
s
xml:id
="
echoid-s3038
"
xml:space
="
preserve
">qua
<
lb
/>
re & </
s
>
<
s
xml:id
="
echoid-s3039
"
xml:space
="
preserve
">el in h o, et fm in g n. </
s
>
<
s
xml:id
="
echoid-s3040
"
xml:space
="
preserve
">Atipſa lz in z o; </
s
>
<
s
xml:id
="
echoid-s3041
"
xml:space
="
preserve
">et m φ in φ n
<
lb
/>
cadet. </
s
>
<
s
xml:id
="
echoid-s3042
"
xml:space
="
preserve
">congruet igitur triangulum l k z triangulo o k z: </
s
>
<
s
xml:id
="
echoid-s3043
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>