Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
111
112
113 1
114
115 2
116
117 3
118
119 4
120
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div201" type="section" level="1" n="66">
          <p>
            <s xml:id="echoid-s3103" xml:space="preserve">
              <pb file="0122" n="122" rhead="FED. COMMANDINI"/>
            teſt in portione, quæ recta linea & </s>
            <s xml:id="echoid-s3104" xml:space="preserve">obtuſianguli coni ſe-
              <lb/>
            ctione, ſeu hyperbola continetur.</s>
            <s xml:id="echoid-s3105" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div204" type="section" level="1" n="67">
          <head xml:id="echoid-head74" xml:space="preserve">THE OREMA IIII. PROPOSITIO IIII.</head>
          <p>
            <s xml:id="echoid-s3106" xml:space="preserve">
              <emph style="sc">In</emph>
            circulo & </s>
            <s xml:id="echoid-s3107" xml:space="preserve">ellipſiidem eſt figuræ & </s>
            <s xml:id="echoid-s3108" xml:space="preserve">graui-
              <lb/>
            tatis centrum.</s>
            <s xml:id="echoid-s3109" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3110" xml:space="preserve">SIT circulus, uel ellipſis, cuius centrum a. </s>
            <s xml:id="echoid-s3111" xml:space="preserve">Dico a gra-
              <lb/>
            uitatis quoque centrum eſſe. </s>
            <s xml:id="echoid-s3112" xml:space="preserve">Si enim fieri poteſt, ſit b cen-
              <lb/>
            trum grauitatis: </s>
            <s xml:id="echoid-s3113" xml:space="preserve">& </s>
            <s xml:id="echoid-s3114" xml:space="preserve">iuncta a b extra figuram in c produca
              <lb/>
            tur: </s>
            <s xml:id="echoid-s3115" xml:space="preserve">quam uero proportionem habetlinea c a ad a b, ha-
              <lb/>
            beat circulus a ad alium circulum, in quo d; </s>
            <s xml:id="echoid-s3116" xml:space="preserve">uel ellipſis ad
              <lb/>
            aliam ellipſim: </s>
            <s xml:id="echoid-s3117" xml:space="preserve">& </s>
            <s xml:id="echoid-s3118" xml:space="preserve">in circulo, uel ellipſi ſigura rectilinea pla-
              <lb/>
            ne deſcribatur adeo, ut tandem relinquantur portiones
              <lb/>
            quædam minores circulo, uel ellipſid; </s>
            <s xml:id="echoid-s3119" xml:space="preserve">quæ figura ſit e f g
              <lb/>
            h _k_ l m n. </s>
            <s xml:id="echoid-s3120" xml:space="preserve">Illud uero in circulo fieri poſſe ex duodecimo
              <lb/>
            elementorum libro, propoſitione ſecunda manifeſte con-
              <lb/>
            ſtat; </s>
            <s xml:id="echoid-s3121" xml:space="preserve">at in ellipſi nos demonſtra-
              <lb/>
              <figure xlink:label="fig-0122-01" xlink:href="fig-0122-01a" number="78">
                <image file="0122-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0122-01"/>
              </figure>
            uinius in commentariis in quin-
              <lb/>
            tam propoſitionem Archimedis
              <lb/>
            de conoidibus, & </s>
            <s xml:id="echoid-s3122" xml:space="preserve">ſphæroidibus.
              <lb/>
            </s>
            <s xml:id="echoid-s3123" xml:space="preserve">erit igitur a centrum grauitatis
              <lb/>
            ipſius figuræ, quod proxime oſtē
              <lb/>
            dimus. </s>
            <s xml:id="echoid-s3124" xml:space="preserve">Itaque quoniam circulus
              <lb/>
            a ad circulum d; </s>
            <s xml:id="echoid-s3125" xml:space="preserve">uel ellipſis a ad
              <lb/>
            ellipſim d eandem proportionē
              <lb/>
            habet, quam linea c a ad a b: </s>
            <s xml:id="echoid-s3126" xml:space="preserve">
              <lb/>
            portiones uero ſunt minores cir
              <lb/>
              <note position="left" xlink:label="note-0122-01" xlink:href="note-0122-01a" xml:space="preserve">8. quinti.</note>
            culo uel ellipſi d: </s>
            <s xml:id="echoid-s3127" xml:space="preserve">habebit circu-
              <lb/>
            lus, uel ellipſis ad portiones ma-
              <lb/>
            iorem proportionem, quàm c a
              <lb/>
              <note position="left" xlink:label="note-0122-02" xlink:href="note-0122-02a" xml:space="preserve">19. quinti
                <lb/>
              apud Cã
                <lb/>
              panum.</note>
            ad a b: </s>
            <s xml:id="echoid-s3128" xml:space="preserve">& </s>
            <s xml:id="echoid-s3129" xml:space="preserve">diuidendo figura recti-
              <lb/>
            linea e f g h _k_ l m n ad </s>
          </p>
        </div>
      </text>
    </echo>