Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
111
112
113 1
114
115 2
116
117 3
118
119 4
120
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="73">
          <p>
            <s xml:space="preserve">
              <pb file="0136" n="136" rhead="FED. COMMANDINI"/>
            medis. </s>
            <s xml:space="preserve">ergo punctum v extra p riſima a f poſitum, centrũ
              <lb/>
            erit magnitudinis cõpoſitæ e x omnibus priſmatibus g z r,
              <lb/>
            r β t, t γ x, x δ k, k δ y, y u, u s, s α h, quod fieri nullo modo po
              <lb/>
            teſt. </s>
            <s xml:space="preserve">eſt enim ex diſſinitione centrum grauitatis ſolidæ figu
              <lb/>
            ræ intra ipſam poſitum, non extra. </s>
            <s xml:space="preserve">quare relinquitur, ut cẽ
              <lb/>
            trum grauitatis priſmatis ſit in linea K m. </s>
            <s xml:space="preserve">Rurſus b c bifa-
              <lb/>
            riam in ξ diuidatur: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ducta a ξ, per ipſam, & </s>
            <s xml:space="preserve">per lineam
              <lb/>
            a g d plan um ducatur; </s>
            <s xml:space="preserve">quod priſma ſecet: </s>
            <s xml:space="preserve">faciatq; </s>
            <s xml:space="preserve">in paral
              <lb/>
            lelogrammo b f ſectionem ξ π di uidet punctum π lineam
              <lb/>
            quoque c f bifariam: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">erit p lani eius, & </s>
            <s xml:space="preserve">trianguli g h K
              <lb/>
            communis ſectio g u; </s>
            <s xml:space="preserve">quòd p ũctum u in inedio lineæ h K
              <lb/>
              <anchor type="figure" xlink:label="fig-0136-01a" xlink:href="fig-0136-01"/>
            poſitum ſi t. </s>
            <s xml:space="preserve">Similiter demonſtrabimus centrum grauita-
              <lb/>
            tis priſm atis in ipſa g u ineſſe. </s>
            <s xml:space="preserve">ſit autem planorum c f n l,
              <lb/>
            a d π ξ communis ſectio linea ρ ο τ quæ quidem priſmatis
              <lb/>
            axis erit, cum tranſeat per centra grauitatis triangulorum
              <lb/>
            a b c, g h k, d e f, ex quartadecima eiuſdem. </s>
            <s xml:space="preserve">ergo centrum
              <lb/>
            grauitatis pri ſmatis a f eſt punctum σ, centrum ſcilicet</s>
          </p>
        </div>
      </text>
    </echo>