Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
91
40
92
93
41
94
95
42
96
97
43
98
99
44
100
101
43
102
103
104
105
106
107
108
109
110
111
112
113
1
114
115
2
116
117
3
118
119
4
120
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(32)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div263
"
type
="
section
"
level
="
1
"
n
="
90
">
<
pb
o
="
32
"
file
="
0175
"
n
="
175
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
<
p
>
<
s
xml:id
="
echoid-s4367
"
xml:space
="
preserve
">SIT fruſtũ pyramidis, uel coni, uel coni portionis a d,
<
lb
/>
cuius maior baſis a b, minor c d. </
s
>
<
s
xml:id
="
echoid-s4368
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4369
"
xml:space
="
preserve
">ſecetur altero plano
<
lb
/>
baſi æquidiſtante, ita utſectio e f ſit proportionalis inter
<
lb
/>
baſes a b, c d. </
s
>
<
s
xml:id
="
echoid-s4370
"
xml:space
="
preserve
">conſtituatur autẽ pyramis, uel conus, uel co-
<
lb
/>
ni portio a g b, cuius baſis ſit eadem, quæ baſis maior fru-
<
lb
/>
ſti, & </
s
>
<
s
xml:id
="
echoid-s4371
"
xml:space
="
preserve
">altitudo æqualis. </
s
>
<
s
xml:id
="
echoid-s4372
"
xml:space
="
preserve
">Di-
<
lb
/>
<
figure
xlink:label
="
fig-0175-01
"
xlink:href
="
fig-0175-01a
"
number
="
129
">
<
image
file
="
0175-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0175-01
"/>
</
figure
>
co fruſtum a d ad pyrami-
<
lb
/>
dem, uel conum, uel coni
<
lb
/>
portionem a g b eandem
<
lb
/>
proportionẽ habere, quã
<
lb
/>
utræque baſes, a b, c d unà
<
lb
/>
cum e f ad baſim a b. </
s
>
<
s
xml:id
="
echoid-s4373
"
xml:space
="
preserve
">eſt
<
lb
/>
enim fruſtum a d æquale
<
lb
/>
pyramidi, uel cono, uel co-
<
lb
/>
ni portioni, cuius baſis ex
<
lb
/>
tribus baſibus a b, e f, c d
<
lb
/>
conſtat; </
s
>
<
s
xml:id
="
echoid-s4374
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4375
"
xml:space
="
preserve
">altitudo ipſius
<
lb
/>
altitudini eſt æqualis: </
s
>
<
s
xml:id
="
echoid-s4376
"
xml:space
="
preserve
">quod mox oſtendemus. </
s
>
<
s
xml:id
="
echoid-s4377
"
xml:space
="
preserve
">Sed pyrami
<
lb
/>
des, coni, uel coni portiões,
<
lb
/>
<
figure
xlink:label
="
fig-0175-02
"
xlink:href
="
fig-0175-02a
"
number
="
130
">
<
image
file
="
0175-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0175-02
"/>
</
figure
>
quæ ſunt æquali altitudine,
<
lb
/>
eãdem inter ſe, quam baſes,
<
lb
/>
proportionem habent, ſicu-
<
lb
/>
ti demonſtratum eſt, partim
<
lb
/>
ab Euclide in duodecimo li-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0175-01
"
xlink:href
="
note-0175-01a
"
xml:space
="
preserve
">6. 11. duo
<
lb
/>
decimi</
note
>
bro elementorum, partim à
<
lb
/>
nobis in cõmentariis in un-
<
lb
/>
decimam propoſitionẽ Ar-
<
lb
/>
chimedis de conoidibus, & </
s
>
<
s
xml:id
="
echoid-s4378
"
xml:space
="
preserve
">
<
lb
/>
ſphæroidibus. </
s
>
<
s
xml:id
="
echoid-s4379
"
xml:space
="
preserve
">quare pyra-
<
lb
/>
mis, uel conus, uel coni por-
<
lb
/>
tio, cuius baſis eſt tribus illis
<
lb
/>
baſibus æqualis ad a g b eam
<
lb
/>
habet proportionem, quam
<
lb
/>
baſes a b, e f, c d ad ab bafim. </
s
>
<
s
xml:id
="
echoid-s4380
"
xml:space
="
preserve
">Fruſtum igitur a d ad a g </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>