Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
91
40
92
93
41
94
95
42
96
97
43
98
99
44
100
101
43
102
103
104
105
106
107
108
109
110
111
112
113
1
114
115
2
116
117
3
118
119
4
120
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(43)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div175
"
type
="
section
"
level
="
1
"
n
="
55
">
<
pb
o
="
43
"
file
="
0097
"
n
="
97
"
rhead
="
DE I _IS_ QVAE VEH. IN AQVA.
"/>
</
div
>
<
div
xml:id
="
echoid-div182
"
type
="
section
"
level
="
1
"
n
="
56
">
<
head
xml:id
="
echoid-head61
"
xml:space
="
preserve
">DEMONSTRATIO QVARTAE PARTIS.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2560
"
xml:space
="
preserve
">HABEAT rurſum portio ad humidum in grauitate
<
lb
/>
proportionem quidem maiorem, quàm quadratum f p ad
<
lb
/>
quadratum b d; </
s
>
<
s
xml:id
="
echoid-s2561
"
xml:space
="
preserve
">minorem uero, quàm quadratum x o ad
<
lb
/>
b d quadratum: </
s
>
<
s
xml:id
="
echoid-s2562
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2563
"
xml:space
="
preserve
">quam proportionem habet portio ad
<
lb
/>
humidum in grauitate, eandem habeat quadratum, quod
<
lb
/>
fit à linea ψ ad quadratum b d. </
s
>
<
s
xml:id
="
echoid-s2564
"
xml:space
="
preserve
">erit ψ maior, quàm f p, & </
s
>
<
s
xml:id
="
echoid-s2565
"
xml:space
="
preserve
">mi
<
lb
/>
nor, quàm x o. </
s
>
<
s
xml:id
="
echoid-s2566
"
xml:space
="
preserve
">aptetur ergo quæ dam rectalinea i u inter
<
lb
/>
portiones a u q l, a x d interiecta, quæ ſit æqualis ψ, & </
s
>
<
s
xml:id
="
echoid-s2567
"
xml:space
="
preserve
">ipſi
<
lb
/>
b d æquidiſtans: </
s
>
<
s
xml:id
="
echoid-s2568
"
xml:space
="
preserve
">occurratq; </
s
>
<
s
xml:id
="
echoid-s2569
"
xml:space
="
preserve
">reliquæ ſectioni in y. </
s
>
<
s
xml:id
="
echoid-s2570
"
xml:space
="
preserve
">rurſus
<
lb
/>
u y dupla ipſius y i demonſtrabitur, ſicuti demonſtrata eſt
<
lb
/>
o g ipſius g x dupla. </
s
>
<
s
xml:id
="
echoid-s2571
"
xml:space
="
preserve
">ducatur autem ab u linea u ο, quæ ſe
<
lb
/>
ctionem a u q l in u contingat: </
s
>
<
s
xml:id
="
echoid-s2572
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2573
"
xml:space
="
preserve
">iuncta a i ad q produca
<
lb
/>
tur. </
s
>
<
s
xml:id
="
echoid-s2574
"
xml:space
="
preserve
">eodem modo oſtendemus lineam a i ipſi i q æqualem
<
lb
/>
eſſe: </
s
>
<
s
xml:id
="
echoid-s2575
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2576
"
xml:space
="
preserve
">a q ipſi
<
lb
/>
<
figure
xlink:label
="
fig-0097-01
"
xlink:href
="
fig-0097-01a
"
number
="
63
">
<
image
file
="
0097-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0097-01
"/>
</
figure
>
u ω æquidiſtan-
<
lb
/>
tem. </
s
>
<
s
xml:id
="
echoid-s2577
"
xml:space
="
preserve
">Demon-
<
lb
/>
ſtrãdum eſt por
<
lb
/>
tionem in humi
<
lb
/>
dum demiſſam,
<
lb
/>
ĩclinatãq; </
s
>
<
s
xml:id
="
echoid-s2578
"
xml:space
="
preserve
">adeo,
<
lb
/>
ut baſis ipſius
<
lb
/>
non contingat
<
lb
/>
humidũ, ita con
<
lb
/>
ſiſtere, ut baſis
<
lb
/>
in humidũ ma-
<
lb
/>
gis demergatur
<
lb
/>
quam ut in uno
<
lb
/>
puncto eius ſu-
<
lb
/>
perficiem cõtin
<
lb
/>
gat. </
s
>
<
s
xml:id
="
echoid-s2579
"
xml:space
="
preserve
">Demittatur enim in humidum, ut dictum eſt; </
s
>
<
s
xml:id
="
echoid-s2580
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2581
"
xml:space
="
preserve
">iaceat
<
lb
/>
primo ſic inclinata, ut baſis nullo modo contingat ſuperfi-
<
lb
/>
ciem humidi. </
s
>
<
s
xml:id
="
echoid-s2582
"
xml:space
="
preserve
">ſecta autem ipſa plano per axem ad </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>