Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 111]
[Figure 112]
[Figure 113]
[Figure 114]
[Figure 115]
[Figure 116]
[Figure 117]
[Figure 118]
[Figure 119]
[Figure 120]
[Figure 121]
[Figure 122]
[Figure 123]
[Figure 124]
[Figure 125]
[Figure 126]
[Figure 127]
[Figure 128]
[Figure 129]
[Figure 130]
[Figure 131]
[Figure 132]
[Figure 133]
[Figure 134]
[Figure 135]
[Figure 136]
[Figure 137]
[Figure 138]
[Figure 139]
[Figure 140]
< >
page |< < of 213 > >|
128FED. COMMANDINI ergo linea a g continenter in duas partes æquales diui-
111. decimi ſa, relinquetur tãdem pars aliqua n g, quæ minor eritl m.
Vtraque uero linearum a g, g b diuidatur in partes æqua-
les ipſi n g:
& per puncta diuiſionum plana oppoſitis pla-
225 huius nis æquidiſtantia ducantur.
erunt ſectiones figuræ æqua-
les, ac ſimiles ipſis a c e, b d f:
& totum priſma diuiſum erit
in priſmata æqualia, &
ſimilia: quæ cum inter ſe congruãt;
& grauitatis centra ſibi ipſis congruentia, reſpondentiaq;
habebunt.
Itaq:
84[Figure 84] ſunt magnitudi-
nes quædã æqua-
les ipſi n h, &
nu-
mero pares, qua-
rum centra gra-
uitatis in eadẽ re
cta linea conſti-
tuuntur:
duæ ue-
ro mediæ æqua-
les ſunt:
& quæ ex
utraque parte i-
pſarum ſimili --
ter æquales:
& æ-
quales rectæ li-
neæ, quæ inter
grauitatis centra
interiiciuntur.
quare ex corolla-
rio quintæ pro-
poſitionis primi
libri Archimedis
de centro graui-
tatis planorum;
magnitudinis ex his omnibus compoſitæ
centrum grauitatis eſt in medio lineæ, quæ magnitudi-
num mediarum centra coniungit.
at qui non ita res

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index