Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 121]
[Figure 122]
[Figure 123]
[Figure 124]
[Figure 125]
[Figure 126]
[Figure 127]
[Figure 128]
[Figure 129]
[Figure 130]
[Figure 131]
[Figure 132]
[Figure 133]
[Figure 134]
[Figure 135]
[Figure 136]
[Figure 137]
[Figure 138]
[Figure 139]
[Figure 140]
[Figure 141]
[Figure 142]
[Figure 143]
[Figure 144]
[Figure 145]
[Figure 146]
[Figure 147]
[Figure 148]
[Figure 149]
[Figure 150]
< >
page |< < of 213 > >|
164FED. COMMANDINI qr, eodem, quo ſupra, modo oſtendemns f g ad p q, ut f h
ad p r.
ſed priſma a e ad ipſum k o eſt, ut f h ad p r. ergo
&
ut f g axis ad axem p q. ex quibus fit, ut pyramis a b c d f
ad pyrami-
120[Figure 120] dẽ k l m n p
eandem-ha
beat pro-
portionẽ,
quãaxis ad
axẽ.
quod
demonſtrã
dũ fuerat.
Simili ra
tione in a-
liis priſma-
tibus &
py
ramidibus eadem demonſtrabuntur.
THEOREMA XVII. PROPOSITIO XXI.
Priſmata omnia, & pyramides inter ſe propor
tionem habent compoſitam ex proportione ba-
ſium, &
proportione altitudinum.
Sint duo priſmata a e, g m: ſitq; priſmatis a e baſis qua
drilaterum a b c d, &
altitudo e f: priſmatis uero g m ba-
fis quadrilaterum g h K l, &
altitudo m n. Dico priſma a e
ad priſma g m proportionem habere compoſitam ex pro
portione baſis a b c d ad baſim g h k l, &
ex proportione
altitudinis e f, ad altitudinem m n.
Sint enim primum e f, m n æquales: & ut baſis a b c d
ad baſim g h k l, ita fiat linea, in qua o ad lineam, in qua p:
ut autem e f ad m n, ita linea p ad lineam q. erunt lineæ
p q inter ſe æquales.
Itaque priſma a e ad priſma g m

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index