Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

#### Table of figures

< >
[Figure 41]
[Figure 42]
[Figure 43]
[Figure 44]
[Figure 45]
[Figure 46]
[Figure 47]
[Figure 48]
[Figure 49]
[Figure 50]
[Figure 51]
[Figure 52]
[Figure 53]
[Figure 54]
[Figure 55]
[Figure 56]
[Figure 57]
[Figure 58]
[Figure 59]
[Figure 60]
[Figure 61]
[Figure 62]
[Figure 63]
[Figure 64]
[Figure 65]
[Figure 66]
[Figure 67]
[Figure 68]
[Figure 69]
[Figure 70]
< >
page |< < of 213 > >|
114FED. COMMANDINI tes æqueponderantes ipſam diuidet.
2 Priſmatis, cylindri, & portionis cylindri axem
appello rectam lineam, quæ oppoſitorum plano-
rum centra grauitatis coniungit.
3 Pyramidis, coni, & portionis coni axem dico li
neam, quæ à uertice ad centrum grauitatis baſis
perducitur.
4 Si pyramis, conus, portio coni, uel conoidis ſe-
cetur plano baſi æquidiſtante, pars, quæ eſt ad ba-
ſim, fruſtum pyramidis, coni, portionis coni, uel
conoidis dicetur;
quorum plana æquidiſtantia,
quæ opponuntur ſimilia ſunt, &
inæqualia: axes
uero ſunt axium figurarum partes, quæ in ipſis
comprehenduntur.
PETITIONES.
1 Solidarum figurarum ſimilium centra grauita-
tis ſimiliter ſunt poſita.
2 Solidis figuris ſimilibus, & æqualibus inter ſe
aptatis, centra quoque grauitatis ipſarum inter ſe
aptata erunt.
THEOREMA I. PROPOSITIO I.
Omnis figuræ rectilineæ in circulo deſcriptæ,
quæ æqualibus lateribus, &
angulis