Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

#### Table of figures

< >
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
[Figure 111]
[Figure 112]
[Figure 113]
[Figure 114]
[Figure 115]
[Figure 116]
[Figure 117]
[Figure 118]
[Figure 119]
[Figure 120]
< >
page |< < (15) of 213 > >|
14315DE CENTRO GRAVIT. SOLID. ni portionem, ita eſt c_y_lindrus ad c_y_lindrum, uel c_y_lin-
dri portio ad c_y_lindri portionem:
& ut p_y_ramis ad p_y_ra-
midem, ita priſma ad priſma, cum eadem ſit baſis, &
æqua
lis altitudo;
erit c_y_lindrus uel c_y_lindri portio x priſma-
ti _y_ æqualis.
eftq; ut ſpacium g h ad ſpacium x, ita c_y_lin-
drus, uel c_y_lindri portio c e ad c_y_lindrum, uel c_y_lindri por-
tionem x.
Conſtatigitur c_y_lindrum uel c_y_lindri portionẽ
c e, ad priſina_y_, quippe cuius baſis eſt figura rectilinea in
117. quinti ſpacio g h deſcripta, eandem proportionem habere, quam
ſpacium g h habet ad ſpacium x, hoc eſt ad dictam figuram.
quod demonſtrandum fuerat.
THE OREMA IX. PROPOSITIO IX.
Si pyramis ſecetur plano baſi æquidiſtante; ſe-
ctio erit figura ſimilis ei, quæ eſt baſis, centrum
grauitatis in axe habens.